
z/OS Communications Server

IP IMS Sockets Guide
Version 1 Release 2

SC31-8830-00

���

z/OS Communications Server

IP IMS Sockets Guide
Version 1 Release 2

SC31-8830-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 203.

First Edition (October 2001)

This edition applies to Version 1 Release 2 of z/OS (program number 5694-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. If the form has been removed, you may address
comments to:

IBM Corporation
Software Reengineering
Department G71A/ Bldg 503
Research Triangle Park, North Carolina 27709–9990
U.S.A.

If you prefer to send comments electronically, use one of the following methods:

Fax (USA and Canada):
1-800-227-5088

Internet e-mail:
usib2hpd@vnet.ibm.com

World Wide Web:
http://www.ibm.com/servers/eserver/zseries/zos

IBMLink:
CIBMORCF at RALVM17

IBM Mail Exchange:
tkinlaw@us.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Book . xi
Typographic Conventions Used in This Book xi
Where to Find More Information. xii

Where to Find Related Information on the Internet xii
Licensed Documents. xiii
LookAt, an Online Message Help Facility xiii
How to Contact IBM® Service xiv
z/OS Communications Server Information xiv

Summary of Changes . xxi

Part 1. IMS Overview . 1

Chapter 1. Using TCP/IP with IMS. 3
The Role of IMS TCP/IP . 3
Introduction to IMS TCP/IP . 4
IMS TCP/IP Feature Components 4

The IMS Listener . 4
The IMS Assist Module . 4
The MVS TCP/IP Socket Application Programming Interface (Sockets

Extended) . 5

Chapter 2. Introduction to TCP/IP for IMS 7
What IMS TCP/IP Does . 7

Using IMS with SNA or TCP/IP 7
TCP/IP Internets . 8

Mainframe Interactive Processing 8
Client/Server Processing . 8
TCP, UDP, and IP . 8
The Socket API . 9

Programming with Sockets . 10
Socket types. 10
Addressing TCP/IP hosts . 11

A Typical Client Server Program Flow Chart 12
Concurrent and Iterative Servers 13

The Basic Socket Calls . 14
Server TCP/IP calls . 15

Socket . 15
Bind . 15
Listen . 16
Accept . 16
GIVESOCKET and TAKESOCKET. 17
Read and Write. 17

Client TCP/IP Calls . 17
The Socket Call . 17
The Connect Call . 17
Read/Write Calls — the Conversation 18
The Close Call . 18

Other Socket Calls . 18

© Copyright IBM Corp. 1994, 2001 iii

The SELECT Call . 18
IOCTL and FCNTL Calls . 21
GIVESOCKET and TAKESOCKET Calls 21

What You Need to Run IMS TCP/IP 23
TCP/IP Services . 23

A Summary of What IMS TCP/IP Provides 23

Part 2. Using The IMS Listener . 25

Chapter 3. Principles of Operation 27
Overview . 27

The Role of the IMS Listener. 27
The Role of the IMS Assist Module 27

Client/Server Logic Flow . 28
How the Connection is Established 28
How the Server Exchanges Data with the Client. 30
How the IMS Listener Manages Multiple Connection Requests 34
Use of the IMS Message Queue 35
Call Sequence for the IMS Listener 35
Application Design Considerations 36
Programs That Are Not Started by the IMS Listener 36
When the Client is an IMS MPP 36
Abend Processing. 37
Implicit-Mode Support for ROLB Processing 37
Restrictions . 38

Chapter 4. How to Write an IMS TCP/IP Client Program 39
Client Program Logic Flow — General 39
Explicit-Mode Client Program Logic Flow 39

Explicit-Mode Client Call Sequence 40
Explicit-Mode Application Data 40

Implicit-Mode Client Logic Flow 41
Implicit-Mode Client Call Sequence 41
Implicit Mode Application Data Stream 42
Implicit-Mode Application Data 42

IMS TCP/IP Message Segment Formats 43
Transaction-Request Message Segment (Client to Listener) 43
Request-Status Message Segment 44
Complete-Status Message Segment 45
End-of-Message Segment (EOM) 45

PL/I Coding . 45

Chapter 5. How to Write an IMS TCP/IP Server Program 47
Server Program Logic Flow —General 47
Explicit-Mode Server Program Logic Flow 47

Explicit-Mode Call Sequence 47
Explicit-Mode Application Data 48
Transaction-Initiation Message Segment 49
Program Design Considerations 49
I/O PCB — Explicit-Mode Server 50
Explicit-Mode Server — PL/I Programming Considerations 50

Implicit-Mode Server Program Logic Flow 50
Implicit-Mode Server Call Sequence 50
Implicit-Mode Application Data 51
Programming to the Assist Module Interface 52
Implicit-Mode Server PL/I Programming Considerations 52

iv z/OS V1R2.0 CS: IP IMS Sockets Guide

Implicit-Mode Server C Language Programming Considerations 52
I/O PCB Implicit-Mode Server 53

Chapter 6. How to Customize and Operate the IMS Listener 55
How to Start the IMS Listener 55
How to Stop the IMS Listener 56
The IMS Listener Configuration File 56

TCPIP Statement . 56
LISTENER Statement . 57
TRANSACTION Statement 57

The IMS Listener Security Exit 58
TCP/IP Services Definitions . 59

The hlq.PROFILE.TCPIP Data Set. 59
The hlq.TCPIP.DATA Data Set 60

Chapter 7. Using the CALL Instruction Application Programming Interface
(API) . 61

Environmental Restrictions and Programming Requirements 61
CALL Instruction Application Programming Interface (API) 62
Understanding COBOL, Assembler, and PL/1 Call Formats 62

COBOL Language Call Format 62
Assembler Language Call Format 63
PL/1 Language Call Format 63

Converting Parameter Descriptions 63
Diagnosing Problems in Applications Using the CALL Instruction API 64
Error Messages and Return Codes 64
Code CALL Instructions. 64

ACCEPT . 64
BIND . 66
CLOSE. 68
CONNECT . 70
FCNTL . 72
GETCLIENTID . 74
GETHOSTBYADDR . 75
GETHOSTBYNAME . 77
GETHOSTID. 80
GETHOSTNAME . 80
GETIBMOPT . 82
GETPEERNAME . 84
GETSOCKNAME . 86
GETSOCKOPT. 87
GIVESOCKET . 91
INITAPI. 93
IOCTL . 95
LISTEN . 99
READ. 101
READV . 102
RECV. 104
RECVFROM . 106
RECVMSG . 108
SELECT . 112
SELECTEX . 116
SEND . 118
SENDMSG . 120
SENDTO . 123
SETSOCKOPT . 125

Contents v

SHUTDOWN . 129
SOCKET . 130
TAKESOCKET . 132
TERMAPI . 134
WRITE . 134
WRITEV . 136

Using Data Translation Programs for Socket Call Interface 137
Data Translation . 137
Bit String Processing . 137

Call Interface PL/1 Sample Programs 144
Sample Code for Server Program 145
Sample Program for Client Program 147
Common Variables Used in PL/1 Sample Programs 149

Chapter 8. IMS Listener Samples 153
IMS TCP/IP Control Statements 153

JCL for Starting a Message Processing Region 153
JCL for Linking the IMS Listener 154
Listener IMS Definitions . 155

Sample Program Explicit-Mode 155
Program Flow . 155
Sample Explicit-Mode Client Program (C Language). 155
Sample Explicit-Mode Server Program (Assembler Language) 158

Sample Program Implicit-Mode 163
Program flow . 163
Sample Implicit-Mode Client Program (C Language). 164
Sample Implicit-Mode Server Program (Assembler Language) 168

Sample Program - IMS MPP Client 171
Program Flow . 171
Sample Client Program for non-IMS server 171
Sample Server Program for IMS MPP Client 180

Part 3. Appendixes . 191

Appendix A. Return Codes 193
Sockets Extended ERRNOs 193

Appendix B. How to Read a Syntax Diagram 197
Symbols and Punctuation . 197
Parameters . 197
Syntax Examples . 197

Appendix C. Information Apars 201
IP Information Apars . 201
SNA Information Apars . 202

Appendix D. Notices . 203
Trademarks. 206

Index . 209

vi z/OS V1R2.0 CS: IP IMS Sockets Guide

Figures

1. The Use of TCP/IP with IMS . 7
2. TCP/IP Protocols when compared to the OSI Model and SNA. 9
3. A Typical Client Server Session . 13
4. An Iterative Server . 14
5. A Concurrent Server . 14
6. The SELECT Call . 19
7. How User Applications Access TCP/IP Networks with IMS TCP/IP. 24
8. IMS TCP/IP Message Flow for Transaction Initiation 29
9. IMS TCP/IP Message Flow for Explicit-Mode Input/Output. 31

10. IMS TCP/IP Message Flow for Implicit Mode Input/Output 33
11. Sample JCL for starting the IMS Listener . 55
12. Definition of the TCP/IP Profile . 60
13. The TCPIPJOBNAME Parameter in the DATA Data Set 60
14. Storage Definition Statement Examples . 64
15. ACCEPT Call Instructions Example . 66
16. BIND Call Instruction Example . 67
17. CLOSE Call Instruction Example . 69
18. CONNECT Call Instruction Example. 71
19. FCNTL Call Instruction Example . 73
20. GETCLIENTID Call Instruction Example . 74
21. GETHOSTBYADDR Call Instruction Example . 76
22. HOSTENT Structure Returned by the GETHOSTBYADDR Call 77
23. GETHOSTBYNAME Call Instruction Example . 78
24. HOSTENT Structure Returned by the GETHOSTYBYNAME Call 79
25. GETHOSTID Call Instruction Example . 80
26. GETHOSTNAME Call Instruction Example . 81
27. GETIBMOPT Call Instruction Example . 83
28. Example of Name Field . 84
29. GETPEERNAME Call Instruction Example . 85
30. GETSOCKNAME Call Instruction Example . 87
31. GETSOCKOPT Call Instruction Example . 88
32. GIVESOCKET Call Instruction Example . 92
33. INITAPI Call Instruction Example . 94
34. IOCTL Call Instruction Example . 96
35. Interface Request Structure (IFREQ) for the IOCTL Call 97
36. COBOL II Example for SIOCGIFCONF. 99
37. LISTEN Call Instruction Example . 100
38. READ Call Instruction Example . 102
39. READV Call Instruction Example . 103
40. RECV Call Instruction Example . 105
41. RECVFROM Call Instruction Example . 107
42. RECVMSG Call Instruction Example . 110
43. SELECT Call Instruction Example . 114
44. SELECTEX Call Instruction Example . 117
45. SEND Call Instruction Example . 119
46. SENDMSG Call Instruction Example . 121
47. SENDTO Call Instruction Example . 124
48. SETSOCKOPT Call Instruction Example. 126
49. SHUTDOWN Call Instruction Example . 130
50. SOCKET Call Instruction Example . 131
51. TAKESOCKET Call Instruction Example . 133
52. TERMAPI Call Instruction Example. 134
53. WRITE Call Instruction Example. 135

© Copyright IBM Corp. 1994, 2001 vii

54. WRITEV Call Instruction Example . 136
55. EZACIC04 Call Instruction Example . 138
56. EZACIC05 Call Instruction Example . 139
57. EZACIC06 Call Instruction Example . 140
58. EZAZIC08 Call Instruction Example . 143

viii z/OS V1R2.0 CS: IP IMS Sockets Guide

Tables

1. First Fullword Passed in a Bit String in Select . 20
2. Second Fullword Passed in a Bit String in Select 20
3. IOCTL Call Arguments . 98
4. Sockets Extended ERRNOs . 193
5. IP Information Apars . 201
6. SNA Information Apars . 202

© Copyright IBM Corp. 1994, 2001 ix

x z/OS V1R2.0 CS: IP IMS Sockets Guide

About This Book

This book describes how to use IP Services with IMS Version 7 and above. It
describes the IMS call interface and the supporting functions.

This book addresses the following topics:
v IMS client/server application design
v The IMS Listener
v The IMS Assist function
v The IMS socket calls, including call syntax conventions

This book is intended for programmers who have some familiarity with IMS
Transaction Manager and IP Services, and who need to develop IMS client/server
applications.

To ensure proper interprogram communication, the two halves of a client/server
program must be developed together. At a minimum, they must agree on protocol
and data formats. To complicate matters (particularly in the case of a UNIX
processor talking to an IMS mainframe), the technology differences are so
extensive that the two halves will often be coded by different individuals — one a IP
socket programmer; the other, an IMS programmer.

This book has been designed to be read by users with a variety of backgrounds
and needs:

v Application designers need to know how the various components of IMS TCP/IP
interact to provide program-to-program communication. These readers should
read “Chapter 3. Principles of Operation” on page 27.

v Experienced IP socket programmers need to know the protocol and message
formats necessary to establish communication with the IMS Listener and with the
server program. These readers should read “Chapter 4. How to Write an IMS
TCP/IP Client Program” on page 39 and “Chapter 7. Using the CALL Instruction
Application Programming Interface (API)” on page 61.

v Experienced IMS application programmers will be familiar with IMS input/output
calls (GU, GN, ISRT). These programmers have two choices:

– Programmers with IMS experience and little or no TCP/IP programming
experience will probably wish to use the IMS Assist module, which accepts
standard IMS I/O calls, and converts them to equivalent socket calls. They
should read the chapter on implicit-mode programming.

– IMS programmers with socket experience can chose to code native C
language or use the Sockets Extended API. These programmers should read
the chapter on explicit-mode programming and “Chapter 7. Using the CALL
Instruction Application Programming Interface (API)” on page 61.

v IMS system programmers and communication programmers are responsible for
the IMS system itself. These readers should read “Chapter 6. How to Customize
and Operate the IMS Listener” on page 55.

Typographic Conventions Used in This Book
This publication uses the following typographic conventions:

v Commands that you enter verbatim onto the command line are presented in
bold.

v Variable information and parameters that you enter within commands, such as
filenames, are presented in italic.

© Copyright IBM Corp. 1994, 2001 xi

v System responses are presented in monospace.

Where to Find More Information
This section contains:

v Pointers to information available on the Internet

v Information about licensed documentation

v Information about LookAt, the online message tool

v A set of tables that describes the books in the z/OS Communications Server
(z/OS CS) library, along with related publications

Where to Find Related Information on the Internet
Home Page Web address
z/OS http://www.ibm.com/servers/eserver/zseries/zos/
z/OS Internet Library

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
IBM Communications Server product

http://www.software.ibm.com/network/commserver/
IBM Communications Server support

http://www.software.ibm.com/network/commserver/support/
IBM Systems Center publications

http://www.redbooks.ibm.com/
IBM Systems Center flashes

http://www-1.ibm.com/support/techdocs/atsmastr.nsf
VTAM and TCP/IP

http://www.software.ibm.com/network/commserver/about/csos390.html
IBM http://www.ibm.com
RFC http://www.ietf.org/rfc.html

Information about Web addresses can also be found in informational APAR II11334.

DNS Web Sites
For information about DNS, see the following Web sites:

USENET news groups:
comp.protocols.dns.bind

For BIND mailing lists, see:

v http://www.isc.org/ml-archives/

– BIND Users

- Subscribe by sending mail to bind-users-request@isc.org

- Submit questions or answers to this forum by sending mail to
bind-users@isc.org

– BIND 9 Users (Note: This list may not be maintained indefinitely.)

- Subscribe by sending mail to bind9-users-request@isc.org

- Submit questions or answers to this forum by sending mail to
bind9-users@isc.org

For definitions of the terms and abbreviations used in this book, you can view or
download the latest IBM Glossary of Computing Terms at the following Web
address:

http://www.ibm.com/ibm/terminology

xii z/OS V1R2.0 CS: IP IMS Sockets Guide

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/redbooks
http://www.ibm.com/support/techdocs
http://www.software.ibm.com/network/commserver/about/csos390.html
http://www.ibm.com
http://www.rfc-editor.org/rfc.html
http://www.ibm.com/ibm/terminology

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

Licensed Documents
z/OS Communications Server licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at
http://www.ibm.com/servers/resourcelink. Licensed books are available only to
customers with a z/OS Communications Server license. Access to these books
requires an IBM Resource Link Web user ID and password, and a key code. With
your z/OS Communications Server order, you received a memo that includes this
key code. To obtain your IBM Resource Link Web user ID and password, log on to
http://www.ibm.com/servers/resourcelink. To register for access to the z/OS licensed
books perform the following steps:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code, you will receive confirmation that your request
is being processed. After your request is processed, you will receive an e-mail
confirmation.

You cannot access the z/OS licensed books unless you have registered for access
to them and received an e-mail confirmation informing you that your request has
been processed. To access the licensed books:

1. Log on to Resource Link using your Resource Link user ID and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS Communications Server.

6. Access the licensed book by selecting the appropriate element.

LookAt, an Online Message Help Facility
LookAt is an online facility that allows you to look up explanations for z/OS CS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS V1R2 Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter
lookat+message ID, as in the following example:
lookat ezz8477i

This results in direct access to the message explanation for message EZZ8477I.

About This Book xiii

www.ibm.com/servers/resourcelink
www.ibm.com/servers/resourcelink

You can use LookAt on the Internet at the following Web site:
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release, if applicable.

How to Contact IBM® Service
For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-237-5511).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m. –
5:00 p.m., local customer time).

Outside of the United States or Puerto Rico, contact your local IBM representative
or your authorized IBM supplier.

z/OS Communications Server Information
This section contains descriptions of the books in the z/OS Communications Server
library.

z/OS Communications Server publications are available:

v Online at the z/OS Internet Library web page at
http://www.ibm.com/servers/eserver/zseries/zos/

v In hardcopy and softcopy

v In softcopy only

Softcopy Information
Softcopy publications are available in the following collections:

Titles Order
Number

Description

z/OS V1R2 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R2, in both BookManager and PDF formats.

z/OS Software Products
Collection

SK3T-4270 This CD includes, in both BookManager and PDF formats, the
libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex bookshelf.

z/OS V1R2 and Software
Products DVD Collection

SK3T-4271 This collection includes the libraries of z/OS (the element and
feature libraries) and the libraries for z/OS software products in both
BookManager and PDF format. This collection combines SK3T-4269
and SK3T-4270.

z/OS Licensed Product Library SK3T-4307 This CD includes the licensed books in both BookManager and PDF
format.

System Center Publication
IBM S/390 Redbooks
Collection

SK2T-2177 This collection contains over 300 ITSO redbooks that apply to the
S/390 platform and to host networking arranged into subject
bookshelves.

z/OS Communications Server Library
The following abbreviations follow each order number in the tables below.

HC/SC — Both hardcopy and softcopy are available.

xiv z/OS V1R2.0 CS: IP IMS Sockets Guide

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/

SC — Only softcopy is available. These books are available on the CD Rom
accompanying z/OS (SK3T-4269 or SK3T-4307). Unlicensed books can be viewed
at the z/OS Internet library site.

Updates to books are available on RETAIN and in the document called OS/390
DOC APARs and ++HOLD DOC data which can be found at
http://www.s390.ibm.com/os390/bkserv/ new_tech_info.html. See “Appendix C.
Information Apars” on page 201 for a list of the books and the informational apars
(info apars) associated with them.

Planning and Migration:

Title Number Format Description

z/OS Communications
Server: SNA Migration

GC31-8774 HC/SC This book is intended to help you plan for SNA, whether
you are migrating from a previous version or installing
SNA for the first time. This book also identifies the
optional and required modifications needed to enable
you to use the enhanced functions provided with SNA.

z/OS Communications
Server: IP Migration

GC31-8773 HC/SC This book is intended to help you plan for TCP/IP
Services, whether you are migrating from a previous
version or installing IP for the first time. This book also
identifies the optional and required modifications needed
to enable you to use the enhanced functions provided
with TCP/IP Services.

Resource Definition, Configuration, and Tuning:

Title Number Format Description

z/OS Communications
Server: IP Configuration
Guide

SC31-8775 HC/SC This book describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS
UNIX System Services, and IBM Time Sharing Option
(TSO) is recommended. Use this book in conjunction
with the z/OS Communications Server: IP Configuration
Reference.

z/OS Communications
Server: IP Configuration
Reference

SC31-8776 HC/SC This book presents information for people who want to
administer and maintain IP. Use this book in conjunction
with the z/OS Communications Server: IP Configuration
Guide. The information in this book includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v SMF records

v Protocol number and port assignments

z/OS Communications
Server: SNA Network
Implementation Guide

SC31-8777 HC/SC This book presents the major concepts involved in
implementing an SNA network. Use this book in
conjunction with the z/OS Communications Server: SNA
Resource Definition Reference.

z/OS Communications
Server: SNA Resource
Definition Reference

SC31-8778 HC/SC This book describes each SNA definition statement,
start option, and macroinstruction for user tables. It also
describes NCP definition statements that affect
SNA.Use this book in conjunction with the z/OS
Communications Server: SNA Network Implementation
Guide.

About This Book xv

http://www.s390.ibm.com/os390/bkserv/new_tech_info.html

Title Number Format Description

z/OS Communications
Server: SNA Resource
Definition Samples

SC31-8836 SC This book contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications
Server: AnyNet SNA over
TCP/IP

SC31-8832 SC This guide provides information to help you install,
configure, use, and diagnose SNA over TCP/IP.

z/OS Communications:
Server AnyNet Sockets over
SNA

SC31-8831 SC This guide provides information to help you install,
configure, use, and diagnose sockets over SNA. It also
provides information to help you prepare application
programs to use sockets over SNA.

Operation:

Title Number Format Description

z/OS Communications
Server: IP User’s Guide and
Commands

SC31-8780 HC/SC This book describes how to use TCP/IP applications. It
contains requests that allow a user to: log on to a
remote host using Telnet, transfer data sets using FTP,
send and receive electronic mail, print on remote
printers, and authenticate network users.

z/OS Communications
Server: IP System
Administrator’s Commands

SC31-8781 HC/SC This book describes the functions and commands
helpful in configuring or monitoring your system. It
contains system administrator’s commands, such as
NETSTAT, PING, TRACERTE and their UNIX
counterparts. It also includes TSO and MVS commands
commonly used during the IP configuration process.

z/OS Communications
Server: SNA Operation

SC31-8779 HC/SC This book serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications
Server: Operations Quick
Reference

SX75-0124 HC/SC This book contains essential information about SNA and
IP commands.

Customization:

Title Number Format Description

z/OS Commmunications
Server: SNA Customization

LY43-0092 SC This book enables you to customize SNA, and includes
the following:

v Communication network management (CNM) routing
table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the
CLU search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

z/OS Communications
Server: IP Network Print
Facility

SC31-8833 SC This book is for system programmers and network
administrators who need to prepare their network to
route SNA, JES2, or JES3 printer output to remote
printers using TCP/IP Services.

Writing Application Programs:

xvi z/OS V1R2.0 CS: IP IMS Sockets Guide

Title Number Format Description

z/OS Communications
Server: IP Application
Programming Interface
Guide

SC31-8788 SC This book describes the syntax and semantics of
program source code necessary to write your own
application programming interface (API) into TCP/IP.
You can use this interface as the communication base
for writing your own client or server application. You can
also use this book to adapt your existing applications to
communicate with each other using sockets over
TCP/IP.

z/OS Communications
Server: IP CICS Sockets
Guide

SC31-8807 SC This book is for people who want to set up, write
application programs for, and diagnose problems with
the socket interface for CICS using z/OS TCP/IP.

z/OS Communications
Server: IP IMS Sockets
Guide

SC31-8830 SC This book is for programmers who want application
programs that use the IMS TCP/IP application
development services provided by IBM’s TCP/IP
Services.

z/OS Communications
Server: IP Programmer’s
Reference

SC31-8787 SC This book describes the syntax and semantics of a set
of high-level application functions that you can use to
program your own applications in a TCP/IP
environment. These functions provide support for
application facilities, such as user authentication,
distributed databases, distributed processing, network
management, and device sharing. Familiarity with the
z/OS operating system, TCP/IP protocols, and IBM Time
Sharing Option (TSO) is recommended.

z/OS Communications
Server: SNA Programming

SC31-8829 SC This book describes how to use SNA macroinstructions
to send data to and receive data from (1) a terminal in
either the same or a different domain, or (2) another
application program in either the same or a different
domain.

z/OS Communications
Server: SNA Programmers
LU 6.2 Guide

SC31-8811 SC This book describes how to use the SNA LU 6.2
application programming interface for host application
programs. This book applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with
other session types. (Only LU 6.2 sessions are covered
in this book.)

z/OS Communications
Server: SNA Programmers
LU 6.2 Reference

SC31-8810 SC This book provides reference material for the SNA LU
6.2 programming interface for host application
programs.

z/OS Communications
Server: CSM Guide

SC31-8808 SC This book describes how applications use the
communications storage manager.

z/OS Communications
Server: CMIP Services and
Topology Agent Guide

SC31-8828 SC This book describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP
application programs. The book provides guide and
reference information about CMIP services and the SNA
topology agent.

Diagnosis:

About This Book xvii

Title Number Format Description

z/OS Communications
Server: IP Diagnosis

GC31-8782 HC/SC This book explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in
the TCP/IP product code. It explains how to gather
information for and describe problems to the IBM
Software Support Center.

z/OS Communications
Server: SNA Diagnosis V1
Techniques and Procedures
and z/OS Communications
Server: SNA Diagnosis V2
FFST Dumps and the VIT

LY43-0088

LY43-0089

HC/SC These books help you identify an SNA problem, classify
it, and collect information about it before you call the
IBM Support Center. The information collected includes
traces, dumps, and other problem documentation.

z/OS Communications
Server: SNA Data Areas
Volume 1 and z/OS
Communications Server:
SNA Data Areas Volume 2

LY43-0090

LY43-0091

SC These books describe SNA data areas and can be used
to read an SNA dump. They are intended for IBM
programming service representatives and customer
personnel who are diagnosing problems with SNA.

Messages and Codes:

Title Number Format Description

z/OS Communications
Server: SNA Messages

SC31-8790 HC/SC This book describes the ELM, IKT, IST, ISU, IUT, IVT,
and USS messages. Other information in this book
includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications
Server: IP Messages
Volume 1 (EZA)

SC31-8783 HC/SC This volume contains TCP/IP messages beginning with
EZA.

z/OS Communications
Server: IP Messages
Volume 2 (EZB)

SC31-8784 HC/SC This volume contains TCP/IP messages beginning with
EZB.

z/OS Communications
Server: IP Messages
Volume 3 (EZY)

SC31-8785 HC/SC This volume contains TCP/IP messages beginning with
EZY.

z/OS Communications
Server: IP Messages
Volume 4 (EZZ-SNM)

SC31-8786 HC/SC This volume contains TCP/IP messages beginning with
EZZ and SNM.

z/OS Communications
Server: IP and SNA Codes

SC31-8791 HC/SC This book describes codes and other information that
appear in z/OS Communications Server messages.

APPC Application Suite:

Title Number Format Description

z/OS Communications
Server: APPC Application
Suite User’s Guide

GC31-8809 SC This book documents the end-user interface (concepts,
commands, and messages) for the AFTP, ANAME, and
APING facilities of the APPC application suite. Although
its primary audience is the end user, administrators and
application programmers may also find it useful.

xviii z/OS V1R2.0 CS: IP IMS Sockets Guide

Title Number Format Description

z/OS Communications
Server APPC Application
Suite Administration

SC31-8835 SC This book contains the information that administrators
need to configure the APPC application suite and to
manage the APING, ANAME, AFTP, and A3270 servers.

z/OS Communications
Serverz: APPC Application
Suite Programming

SC31-8834 SC This book provides the information application
programmers need to add the functions of the AFTP
and ANAME APIs to their application programs.

Redbooks
The following Redbooks may help you as you implement z/OS Communications
Server.

Title Number

TCP/IP Tutorial and Technical Overview GG24–3376

SNA and TCP/IP Integration SG24–5291

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 1: Configuration and Routing

SG24–5227

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 2: UNIX Applications

SG24–5228

IBM Communication Server for OS/390 V2R10 TCP/IP Implementation Guide:
Volume 3: MVS Applications

SG24–5229

OS/390 Secureway Communication Server V2R8 TCP/IP Guide to Enhancements SG24–5631

TCP/IP in a Sysplex SG24–5235

Managing OS/390 TCP/IP with SNMP SG24–5866

Security in OS/390–based TCP/IP Networks SG24–5383

IP Network Design Guide SG24–2580

Related Information
For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/OS
publication.

The table below lists books that may be helpful to readers.

Title Number

z/OS SecureWay Security Server Firewall Technologies SC24-5922

S/390: OSA-Express Customer’s Guide and Reference SA22-7403

z/OS MVS Diagnosis: Procedures GA22-7587

z/OS MVS Diagnosis: Reference GA22-7588

z/OS MVS Diagnosis: Tools and Service Aids GA22-7589

Determining If a Publication Is Current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. Here is how to determine if
you are looking at the most current copy of a publication:

About This Book xix

1. At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the publication
order number GC28-1747-07, the dash level 07 means that the publication is
more current than previous levels, such as 05 or 04.

2. If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

3. To compare softcopy publications, you can check the last two characters of the
publication’s filename (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

xx z/OS V1R2.0 CS: IP IMS Sockets Guide

Summary of Changes

Summary of Changes
for SC31-8830-00
z/OS Version 1 Release 2

This book contains information previously presented in OS/390 V2R5 eNetwork
Communications Server: IP IMS Sockets Guide, SC31-8519.

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

© Copyright IBM Corp. 1994, 2001 xxi

|
|
|

|
|

|
|
|

xxii z/OS V1R2.0 CS: IP IMS Sockets Guide

Part 1. IMS Overview

© Copyright IBM Corp. 1994, 2001 1

2 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 1. Using TCP/IP with IMS

This chapter includes a discussion of the kind of applications for which IMS TCP/IP
is intended and an overview of its components.

The Role of IMS TCP/IP
The IMS/ESA database and transaction management facility is used throughout the
world. For many enterprises, IMS is the data processing backbone, supporting large
personnel and financial databases, manufacturing control files, and inventory
management facilities. IMS backup and recovery features protect valuable data
assets, and the IMS Transaction Manager provides high-speed access for
thousands of concurrent users.

Traditionally, many IMS users have used 3270-type protocol to communicate with
the IMS Transaction Manager. In that environment, all of the processing, including
display screen formatting, is done by the IMS mainframe. During the decade of the
1980s, users began to move some of the processing outboard into personal
computers. However, these PCs were typically connected to IMS via SNA 3270
protocol.

During that period, although most IMS users were focused on 3270 PC emulation,
many non-IMS users were busy building a network based on a different protocol,
called TCP/IP. As this trend developed, the need for an access path between
TCP/IP-communicating devices and the still-indispensable processing power of IMS
became clear. IMS TCP/IP provides that access path. Its role can be more easily
understood when one distinguishes between traditional 3270 applications (in which
the IMS processor does all the work), and the more complex client/server
applications (in which the application logic is divided between the IMS processor
and another programmable device such as a TCP/IP host).

MVS TCP/IP supports both application types:

v When a TCP/IP host needs access to a traditional 3270 Message Format Service
(MFS) application, it does not need to use the IMS TCP/IP feature; it can connect
to IMS directly through Telnet which provides 3270 emulation services for
TCP/IP-connected clients. Telnet is a part of the base TCP/IP Services product.
(See z/OS Communications Server: IP User’s Guide and Commands for more
information).

v When a TCP/IP host needs to support a client/server application, it should use
the IMS TCP/IP feature of TCP/IP Services. This feature is specifically designed
to support two-way client/server communication between an IMS message
processing program (MPP) and a TCP/IP host.

As used in this book, the term client refers to a program that requests services of
another program. That other program is known as the server. The client is often a
UNIX-based program; however, DOS-, OS/2*-, CMS-, and MVS-based programs
can also act as clients. Similarly, as used in this book, the term server refers to a
program that is often an IMS MPP; however, the server can be a TCP/IP host,
responding to an IMS MPP client.

© Copyright IBM Corp. 1994, 2001 3

Introduction to IMS TCP/IP
For peer-to-peer applications that use SNA communication facilities, remote
programmable devices communicate with IMS through the advanced
program-to-program communication (APPC) API. For peer-to-peer applications that
use TCP/IP communication facilities, remote programmable devices communicate
with IMS through facilities provided by IMS TCP/IP.

The IMS TCP/IP feature provides the services necessary to establish and maintain
connection between a TCP/IP-connected host and an IMS MPP. In addition, it
allows client/server applications to be developed using the TCP/IP socket
application programming interface.

In operation, when a TCP/IP client requires program-to-program communication with
an IMS server message processing program (MPP), the client sends its request to
TCP/IP Services. TCP/IP passes the request to the IMS Listener, which schedules
the requested MPP and transfers control of the connection to it. Once control of the
connection is passed, data transfer between the server and the remote client is
performed using socket calls.

IMS TCP/IP Feature Components
The IMS TCP/IP feature consists of the following components:

v The IMS Listener, which provides connectivity

v The IMS Assist module, which simplifies TCP/IP communications programming

v The Sockets Extended application programming interface (API) 1

The IMS Listener
The purpose of the Listener is to provide clients with a single point of contact to
IMS. The IMS Listener is a batch program (BMP) that waits for connection requests
from remote TCP/IP-connected hosts. When a request arrives, the Listener
schedules the appropriate transaction (the server) and passes a TCP/IP socket
(representing the connection) to that server.

The IMS Listener maintains connection requests until the requested MPP takes
control of the socket. The Listener is capable of maintaining a variable number of
concurrent connection requests.

The IMS Assist Module
The Assist module is a subroutine that is a part of the server program. Its use is
optional. Its purpose is to allow the use of conventional IMS calls for TCP/IP
communication between client and server. In use, the Assist module intercepts the
IMS calls and issues the corresponding socket commands; consequently, IMS MPP
programmers who use the IMS Assist module require no TCP/IP skills.

Programs that do use the Assist module are known as implicit-mode programs
because the socket calls are issued implicitly by the Assist module.

Programs that do not use the Assist module issue socket calls directly. Such
programs are known as explicit-mode programs because of their explicit use of the
calls.

1. Shipped with the TCP/IP V3R2 for MVS base product

4 z/OS V1R2.0 CS: IP IMS Sockets Guide

The MVS TCP/IP Socket Application Programming Interface (Sockets
Extended)

The socket call interface provides a set of programming calls that can be used in an
IMS message processing program to conduct a conversation with a peer program in
another TCP/IP processor. The interface is derived from BSD 4.3 socket, a
commonly used communications programming interface in the TCP/IP environment.
Socket calls include connection, initiation, and termination functions, as well as
basic read/write communication. The MVS TCP/IP socket call interface makes it
possible to issue socket calls from programs written in COBOL, PL/I, and assembler
language.

The IMS socket calls are a subset of the TCP/IP socket calls. They are designed to
be used in programs written in other than C language; hence the term Sockets
Extended.

Chapter 1. Using TCP/IP with IMS 5

6 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 2. Introduction to TCP/IP for IMS

This chapter presents an overview of TCP/IP as it is used with MVS.

What IMS TCP/IP Does
The IMS TCP/IP feature allows remote users to access IMS client/server
applications over TCP/IP internets. It is a feature of TCP/IP Services. Figure 1
shows how IMS TCP/IP gives a variety of remote users peer-to-peer communication
with IMS applications.

It is important to understand that IMS TCP/IP is primarily intended to support
peer-to-peer applications, as opposed to the traditional IMS mainframe interactive
applications in which the IMS system contained all programmable logic, and the
remote terminal was often referred to as a “dumb” terminal. To connect a TCP/IP
host to one of those traditional applications, you should first consider the use of
Telnet, a function of TCP/IP Services which provides 3270 emulation. With Telnet,
you can access existing 3270-style Message Format Services applications without
modification. You should consider IMS TCP/IP only when developing new
peer-to-peer applications in which both ends of the connection are programmable.

IMS TCP/IP provides a variant of the BSD 4.3 Socket interface, which is widely
used in TCP/IP networks and is based on the UNIX** system and other operating
systems. The socket interface consists of a set of calls that IMS application
programs can use to set up connections, send and receive data, and perform
general communication control functions. The programs can be written in COBOL,
PL/I, assembler language, or C.

Using IMS with SNA or TCP/IP
IMS is an online transaction processing system. This means that application
programs using IMS can handle large numbers of data transactions from large
networks of computers and terminals.

System/390

IMS region

IMS
BMP

IMS
Listener

TCP/IP

for

MVS

LAN

UNIX

OS/2

other
networks

VAX

Figure 1. The Use of TCP/IP with IMS

© Copyright IBM Corp. 1994, 2001 7

Communication throughout these networks has often been based on the Systems
Network Architecture (SNA) family of protocols. IMS TCP/IP offers IMS users an
alternative to SNA — the TCP/IP family of protocols for those users whose native
communications protocol is TCP/IP.

TCP/IP Internets
This section describes some of the basic ideas behind the TCP/IP family of
protocols.

Like SNA, TCP/IP is a set of communication protocols used between physically
separated computer systems. Unlike SNA and most other protocols, TCP/IP is not
designed for a particular hardware technology. TCP/IP can be implemented on a
wide variety of physical networks, and is specially designed for communicating
between systems on different physical networks (local and wide area). This is called
internetworking.

Mainframe Interactive Processing
TCP/IP Services supports traditional 3270 mainframe interactive (MFI) applications
with an emulator function called Telnet (TN3270). For these applications, all
program logic runs in the mainframe, and the remote host uses only that amount of
logic necessary to provide basic communications services. Thus, if your
requirement is simply to provide access from a remote TCP/IP host to existing IMS
MFI applications, you should consider Telnet rather than IMS TCP/IP as the
communications vehicle. Telnet 3270-emulation functions allow your TCP/IP host to
communicate with traditional applications without modification.

Client/Server Processing
TCP/IP also supports client/server processing, where processes are either:
v Servers that provide a particular service and respond to requests for that service
v Clients that initiate the requests to the servers

With IMS TCP/IP, remote client systems can initiate communications with IMS and
cause an IMS transaction to start. It is anticipated that this will be the most common
mode of operation. (Alternatively, the remote system can act as a server with IMS
initiating the conversation.)

TCP, UDP, and IP
TCP/IP is a family of protocols that is named after its two most important members.
Figure 2 on page 9 shows the TCP/IP protocols used by IMS TCP/IP, in terms of the
layered Open Systems Interconnection (OSI) model, which is widely used to
describe data communication systems. For IMS users who might be more
accustomed to SNA, the left side of Figure 2 shows the SNA layers, which
correspond very closely to the OSI layers.

8 z/OS V1R2.0 CS: IP IMS Sockets Guide

The protocols implemented by TCP/IP Services and used by IMS TCP/IP, are
highlighted in Figure 2:
Transmission Control Protocol (TCP)

In terms of the OSI model, TCP is a transport-layer protocol. It provides a
reliable virtual-circuit connection between applications; that is, a connection is
established before data transmission begins. Data is sent without errors or
duplication and is received in the same order as it is sent. No boundaries are
imposed on the data; TCP treats the data as a stream of bytes.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides
an unreliable datagram connection between applications (that is, data is
transmitted link by link; there is no end-to-end connection). The service provides
no guarantees: data can be lost or duplicated, and datagrams can arrive out of
order.

Internet Protocol (IP)
In terms of the OSI model, IP is a network-layer protocol. It provides a
datagram service between applications, supporting both TCP and UDP.

The Socket API

What the Socket API Provides
The socket API is a collection of socket calls that enable you to perform the
following primary communication functions between application programs:
v Set up and establish connections to other users on the network
v Send and receive data to and from other users
v Close down connections

In addition to these basic functions, the API enables you to:

v Interrogate the network system to get names and status of relevant resources

v Perform system and control functions as required

IMS TCP/IP provides two TCP/IP socket application program interfaces (APIs),
similar to those used on UNIX systems. One interfaces to C language programs,
the other to COBOL, PL/I, and System/370* assembler language programs.

v C language. Historically, TCP/IP has been associated with the C language and
the UNIX operating system. Textbook descriptions of socket calls are usually
given in C, and most socket programmers are familiar with the C interface to
TCP/IP. For these reasons, TCP/IP Services includes a C language API. If you
are writing new TCP/IP applications and are familiar with C language

Figure 2. TCP/IP Protocols when compared to the OSI Model and SNA

Chapter 2. Introduction to TCP/IP for IMS 9

programming, you might prefer to use this interface. See z/OS Communications
Server: IP Application Programming Interface Guide for the C language socket
calls supported by MVS TCP/IP.

v Sockets Extended API (COBOL, PL/I, Assembler Language). The Sockets
Extended API (Sockets Extended) is for those who want to write in COBOL, PL/I,
or assembler language, or who have COBOL, PL/I, or assembler language
programs that need to be modified to run with TCP/IP. The Sockets Extended API
enables you to do this by using CALL statements. If you are writing new TCP/IP
applications in COBOL, PL/I, or assembler language, you might prefer to use the
Sockets Extended API. With this interface, C language is not required. See
“Chapter 7. Using the CALL Instruction Application Programming Interface (API)”
on page 61 for details of this interface.

Programming with Sockets
The original UNIX socket interface was designed to hide the physical details of the
network. It included the concept of a socket, which would represent the connection
to the programmer, yet shield the program (as much as possible) from the details of
communication programming. A socket is an end-point for communication that
can be named and addressed in a network. From an application program
perspective, a socket is a resource that is allocated by the TCP/IP address space. A
socket is represented to the program by an integer called a socket descriptor.

Socket types
The MVS socket APIs provide a standard interface to the transport and internetwork
layer interfaces of TCP/IP. They support three socket types: stream, datagram, and
raw. Stream and datagram sockets interface to the transport layer protocols, and
raw sockets interface to the network layer protocols. All three socket types are
discussed here for background purposes.

Stream sockets transmit data between TCP/IP hosts that are already connected to
one another. Data is transmitted in a continuous stream; in other words, there are
no record length or newline character boundaries between data. Communicating
processes 2 must agree on a scheme to ensure that both client and server have
received all data. One way of doing this is for the sending process to send the
length of the data, followed by the data itself. The receiving process reads the
length and then loops, accepting data until all of it has been transferred.

In TCP/IP terminology, the stream socket interface defines a reliable
connection-oriented service. In this context, the word reliable means that data is
sent without error or duplication and is received in the same order as it is sent.
Flow control is built in to avoid data overruns.

The datagram socket interface defines a connectionless service. Datagrams are
sent as independent packets. The service provides no guarantees; data can be lost
or duplicated, and datagrams can arrive out of order. The size of a datagram is
limited to the size that can be sent in a single transaction (currently the default is
8192 and the maximum is 65507). No disassembly and reassembly of packets is
performed by TCP/IP.

The raw socket interface allows direct access to lower layer protocols, such as IP
and Internet Control Message Protocol (ICMP). This interface is often used for
testing new protocol implementations.

2. In TCP/IP terminology, a process is essentially the same as an application program.

10 z/OS V1R2.0 CS: IP IMS Sockets Guide

Addressing TCP/IP hosts
The following section describes how one TCP/IP host addresses another TCP/IP
host. 3

Address Families
An address family defines a specific addressing format. Applications that use the
same addressing family have a common scheme for addressing socket end-points.
TCP/IP for IMS supports the AF_INET address family.

Socket Addresses
A socket address in the AF_INET family comprises 4 fields: the name of the
address family itself (AF_INET), a port, an internet address, and an eight-byte
reserved field. In COBOL, a socket address looks like this:
01 NAME

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP_ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

You will find this structure in every call that addresses another TCP/IP host.

In this structure, FAMILY is a half-word that defines which addressing family is
being used. In IMS, FAMILY is always set to a value of 2, which specifies the
AF_INET internet address family. 4 The PORT field identifies the application port
number; it must be specified in network byte order. The IP_ADDRESS field is the
internet address of the network interface used by the application. It also must be
specified in network byte order. The RESERVED field should be set to all zeros.

Internet (IP) Addresses
An internet addresses (otherwise known as an IP address) is a 32-bit field that
represents a network interface. An IP address is commonly represented in dotted
decimal notation such as 129.5.25.1. Every internet address within an administered
AF_INET domain must be unique. A common misunderstanding is that a host must
have only one internet address. In fact, a single host may have several internet
addresses — one for each network interface.

Ports
A port is a 16-bit integer that defines a specific application, within an IP address, in
which several applications use the same network interface. The port number is a
qualifier that TCP/IP uses to route incoming data to a specific application within an
IP address. Some port numbers are reserved for particular applications and are
called well-known ports, such as Port 23, which is the well-known port for Telnet.

As an example, an MVS system with an IP address of 129.9.12.7 might have IMS
as port 2000, and Telnet as port 23. In this example, a client desiring connection to
IMS would issue a CONNECT call, requesting port 2000 at IP address 129.9.12.7.

Sockets and Ports:

Note: It is important to understand the difference between a socket and a port.
TCP/IP defines a port to represent a certain process on a certain machine

3. In TCP/IP terminology, a host is simply a computer that is running TCP/IP. There is no connotation of ″mainframe″ or large
processor within the TCP/IP definition of the word host.

4. Note that sockets support many address families, but TCP/IP for IMS only supports the internet address family.

Chapter 2. Introduction to TCP/IP for IMS 11

(network interface). A port represents the location of one process in a host
that can have many processes. A bound socket represents a specific port
and the IP address of its host.

Domain Names
Because dotted decimal IP addresses are difficult to remember, TCP/IP also allows
you to represent host interfaces on the network as alphabetic names, such as
Alana.E04.IBM.COM, or CrFre@AOL.COM. Every Domain Name has an equivalent
IP address or set of addresses. TCP/IP includes service functions
(GETHOSTBYNAME and GETHOSTBYADDR) that will help you convert from one
notation to another.

Network Byte Order
In the open environment of TCP/IP, internet addresses must be defined in terms of
the architecture of the machines. Some machine architectures, such as IBM
mainframes, define the lowest memory address to be the high-order bit, which is
called big endian. However, other architectures, such as IBM PCs, define the lowest
memory address to be the low-order bit, which is called little endian.

Network addresses in a given network must all follow a consistent addressing
convention. This convention, known as Network Byte Order, defines the bit-order of
network addresses as they pass through the network. The TCP/IP standard
Network Byte Order is big-endian. In order to participate in a TCP/IP network,
little-endian systems usually bear the burden of conversion to Network Byte Order.

Note: The socket interface does not handle application data bit-order differences.
Application writers must handle these bit order differences themselves.

A Typical Client Server Program Flow Chart
Stream-oriented socket programs generally follow a prescribed sequence. See
Figure 3 on page 13 for a diagram of the logic flow for a typical client and server. As
you study this diagram, keep in mind the fact that a concurrent server typically
starts before the client does, and waits for the client to request connection at step
�3�. It then continues to wait for additional client requests after the client connection
is closed.

12 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|
|
|

Concurrent and Iterative Servers
An iterative server handles both the connection request and the transaction involved
in the call itself. Iterative servers are fairly simple and are suitable for transactions
that do not last long.

However, if the transaction takes more time, queues can build up quickly. In
Figure 4 on page 14, once Client A starts a transaction with the server, Client B
cannot make a call until A has finished.

Figure 3. A Typical Client Server Session

Chapter 2. Introduction to TCP/IP for IMS 13

So, for lengthy transactions, a different sort of server is needed — the concurrent
server, as shown in Figure 5. Here, Client A has already established a connection
with the server, which has then created a child server process to handle the
transaction. This allows the server to process Client B’s request without waiting for
A’s transaction to complete. More than one child server can be started in this way.

TCP/IP provides a concurrent server program called the IMS Listener. It is
described in “Chapter 6. How to Customize and Operate the IMS Listener” on
page 55.

Figure 3 on page 13 illustrates a concurrent server at work.

The Basic Socket Calls
The following is an overview of the basic socket calls.

The following calls are used by the server:

SOCKET
Obtains a socket to read from or write to.

BIND Associates a socket with a port number.

LISTEN
Tells TCP/IP that this process is listening for connections on this socket.

SELECT
Waits for activity on a socket.

ACCEPT
Accepts a connection from a client.

The following calls are used by a concurrent server to pass the socket from
the parent server task (Listener) to the child server task (user-written
application).

Iterative
Server

Client B

Client A

TCP/IP

Figure 4. An Iterative Server

Concurrent
Server

child
server

process

TCP/IP

Client B

Client A

Figure 5. A Concurrent Server

14 z/OS V1R2.0 CS: IP IMS Sockets Guide

GIVESOCKET
Gives a socket to a child server task.

TAKESOCKET
Accepts a socket from a parent server task.

GETCLIENTID
Optionally used by the parent server task to determine its own address
space name (if unknown) prior to issuing the GIVESOCKET.

The following calls are used by the client:

SOCKET
Allocates a socket to read from or write to.

CONNECT
Allows a client to open a connection to a server’s port.

The following calls are used by both the client and the server:
WRITE

Sends data to the process on the other host.
READ Receives data from the other host.
CLOSE

Terminates a connection, deallocating the socket.

For full discussion and examples of these calls, see “Chapter 7. Using the CALL
Instruction Application Programming Interface (API)” on page 61.

Server TCP/IP calls
To understand Socket programming, the client program and the server program
must be considered separately. In this section the call sequence for the server is
described; the next section discusses the typical call sequence for a client. This is
the logical presentation sequence because the server is usually already in
execution before the client is started. The step numbers (such as�5�) in this section
refer to the steps in Figure 3 on page 13.

Socket
The server must first obtain a socket �1�. This socket provides an end-point to
which clients can connect.

A socket is actually an index into a table of connections in the TCP/IP address
space, so TCP/IP usually assigns socket numbers in ascending order. In COBOL,
the programmer uses the SOCKET call to obtain a new socket.

The socket function specifies the address family (AF_INET), the type of socket
(STREAM), and the particular networking protocol (PROTO) to use. (When PROTO
is set to zero, the TCP/IP address space automatically uses the appropriate
protocol for the specified socket type). Upon return, the newly allocated socket’s
descriptor is returned in RETCODE.

For an example of the SOCKET call, see “SOCKET” on page 130.

Bind
At this point �2�, an entry in the table of communications has been reserved for the
application. However, the socket has no port or IP address associated with it until
the BIND call is issued. The BIND function requires 3 parameters:

Chapter 2. Introduction to TCP/IP for IMS 15

v The socket descriptor that was just returned by the SOCKET call.
v The number of the port on which the server wishes to provide its service
v The IP address of the network connection on which the server is listening. If the

application wants to receive connection requests from any network interface, the
IP address should be set to zeros.

For an example of the BIND call, see “BIND” on page 66.

Listen
After the bind, the server has established a specific IP address and port upon which
other TCP/IP hosts can request connection. Now it must notify the TCP/IP address
space that it intends to listen for connections on this socket. The server does this
with the LISTEN�3� call, which puts the socket into passive open mode. Passive
open mode describes a socket that can accept connection requests, but cannot be
used for communication. A passive open socket is used by a listener program like
the IMS Listener to await connection requests. Sockets that are directly used for
communication between client and server are known as active open sockets. In
passive open mode, the socket is open for client contacts; it also establishes a
backlog queue of pending connections.

This LISTEN call tells the TCP/IP address space that the server is ready to begin
accepting connections. Normally, only the number of requests specified by the
BACKLOG parameter will be queued.

For an example of the LISTEN call, see “LISTEN” on page 99.

Accept
At this time �5�, the server has obtained a socket, bound the socket to an IP
address and port, and issued a LISTEN to open the socket. The server main task is
now ready for a client to request connection �4�. The ACCEPT call temporarily
blocks further progress. 5

The default mode for Accept is blocking. Accept behavior changes when the socket
is non-blocking. The FCNTL() or IOCTL() calls can be used to disable blocking for a
given socket. When this is done, calls that would normally block continue regardless
of whether the I/O call has completed. If a socket is set to non-blocking and an I/O
call issued to that socket would otherwise block (because the I/O call has not
completed) the call returns with ERRNO 35 (EWOULDBLOCK).

When the ACCEPT call is issued, the server passes its socket descriptor, S, to
TCP/IP. When the connection is established, the ACCEPT call returns a new socket
descriptor (in RETCODE) that represents the connection with the client. This is the
socket upon which the server subtask communicates with the client.
Meanwhile, the original socket (S) is still allocated, bound and ready for use by the
main task to accept subsequent connection requests from other clients.

To accept another connection, the server calls ACCEPT again. By repeatedly calling
ACCEPT, a concurrent server can establish simultaneous sessions with multiple
clients.

For an example of the ACCEPT call, see “ACCEPT” on page 64.

5. Blocking is a UNIX concept in which the requesting process is suspended until the request is satisfied. It is roughly analogous to
the MVS wait. A socket is blocked while an I/O call waits for an event to complete. If a socket is set to block, the calling program is
suspended until the expected event completes.

16 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|

GIVESOCKET and TAKESOCKET
The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. A server handling more than one client
simultaneously acts like a dispatcher at a messenger service. A messenger
dispatcher gets telephone calls from people who want items delivered and the
dispatcher sends out messengers to do the work. In a similar manner, the server
receives client requests, and then spawns tasks to handle each client.

In UNIX**-based servers, the fork() system call is used to dispatch a new subtask
after the initial connection has been established. When the fork() command is used,
the new process automatically inherits the socket that is connected to the client.

Because of architectural differences, CICS sockets does not implement the fork()
system call.Tasks use the GIVESOCKET and TAKESOCKET functions to pass
sockets from parent to child. The task passing the socket uses GIVESOCKET, and
the task receiving the socket uses TAKESOCKET. See “GIVESOCKET and
TAKESOCKET Calls” on page 21 for more information about these calls.

Read and Write
Once a client has been connected with the server, and the socket has been
transferred from the main task (parent) to the subtask (child), the client and server
exchange application data, using various forms of READ/WRITE calls. See
“Read/Write Calls — the Conversation” on page 18 for details about these calls.

Client TCP/IP Calls
The TCP/IP call sequence for a client is simpler than the one for a concurrent
server. A client only has to support one connection and one conversation. A
concurrent server obtains a socket upon which it can listen for connection requests,
and then creates a new socket for each new connection.

The Socket Call
In the same manner as the server, the first call �1� issued by the client is the
SOCKET call. This call causes allocation of the socket on which the client will
communicate.
CALL 'EZASOKET' USING SOCKET-FUNCTION SOCTYPE PROTO ERRNO RETCODE.

See “SOCKET” on page 130 for a sample of the SOCKET call.

The Connect Call
Once the SOCKET call has allocated a socket to the client, the client can then
request connection on that socket with the server through use of the CONNECT call
�4�.

The CONNECT call attempts to connect socket descriptor (S) to the server with an
IP address of NAME. The CONNECT call blocks until the connection is accepted by
the server. On successful return, the socket descriptor (S) can be used for
communication with the server.

This is essentially the same sequence as that of the server; however, the client
need not issue a BIND command because the port of a client has little significance.
The client need only issue the CONNECT call, which issues an implicit BIND. When
the CONNECT call is used to bind the socket to a port, the port number is assigned
by the system and discarded when the connection is closed. Such a port is known

Chapter 2. Introduction to TCP/IP for IMS 17

as an ephemeral port because its life is very short as compared with that of a
concurrent server, whose port remains available for a prolonged time.

See “CONNECT” on page 70 for an example of the CONNECT call.

Read/Write Calls — the Conversation
A variety of I/O calls is available to the programmer. The READ and WRITE,
READV and WRITEV, and SEND�6� and RECV�6� calls can be used only on
sockets that are in the connected state. The SENDTO and RECVFROM, and
SENDMSG and RECVMSG calls can be used regardless of whether a connection
exists.

The WRITEV, READV, SENDMSG, and RECVMSG calls provide the additional
features of scatter and gather data. Scattered data can be located in multiple data
buffers. The WRITEV and SENDMSG calls gather the scattered data and send it.
The READV and RECVMSG calls receive data and scatter it into multiple buffers.

The WRITE and READ calls specify the socket S on which to communicate, the
address in storage of the buffer that contains, or will contain, the data (BUF), and
the amount of data transferred (NBYTE). The server uses the socket that is
returned from the ACCEPT call.

These functions return the amount of data that was either sent or received.
Because stream sockets send and receive information in streams of data, it can
take more than one call to WRITE or READ to transfer all of the data. It is up to the
client and server to agree on some mechanism of signalling that all of the data has
been transferred.

v For an example of the READ call, see “READ” on page 101.

v For an example of the WRITE call, see “WRITE” on page 134.

The Close Call
When the conversation is over, both the client and server call CLOSE to end the
connection. The CLOSE call also deallocates the socket, freeing its space in the
table of connections. For an example of the CLOSE call, see “CLOSE” on page 68

Other Socket Calls
Several other calls that are often used — particularly in servers — are the SELECT
call, the GIVESOCKET/TAKESOCKET calls, and the IOCTL and FCTL calls. These
calls are discussed next.

The SELECT Call
Applications such as concurrent servers often handle multiple sockets at once. In
such situations, the SELECT call can be used to simplify the determination of which
sockets have data to be read, which are ready for data to be written, and which
have pending exceptional conditions. An example of how the SELECT call is used
can be found in Figure 6 on page 19.

18 z/OS V1R2.0 CS: IP IMS Sockets Guide

In this example, the application sends bit sets (the xSNDMASK sets) to indicate
which sockets are to be tested for certain conditions, and receives another set of
bits (the xRETMASK sets) from TCP/IP to indicate which sockets meet the specified
conditions.

The example also indicates a time-out. If the time-out parameter is NULL, this is the
C language API equivalent of a wait forever. (In Sockets Extended, a negative
timeout value is a wait forever.) If the time-out parameter is nonzero, SELECT only
waits the timeout amount of time for at least one socket to become ready on the
indicated conditions. This is useful for applications servicing multiple connections
that cannot afford to wait for data on a single connection. If the xSNDMASK bits are
all zero, SELECT acts as a timer.

With the Socket SELECT call, you can define which sockets you want to test (the
xSNDMASKs) and then wait (block) until one of the specified sockets is ready to be
processed. When the SELECT call returns, the program knows only that some
event has occurred, and it must test a set of bit masks (xRETMASKs) to determine
which of the sockets had the event, and what the event was.

To maximize performance, a server should only test those sockets that are active.
The SELECT call allows an application to select which sockets will be tested, and
for what. When the Select call is issued, it blocks until the specified sockets are
ready to be serviced (or, optionally) until a timer expires. When the select call
returns, the program must check to see which sockets require service, and then
process them.

To allow you to test any number of sockets with just one call to SELECT, place the
sockets to test into a bit set, passing the bit set to the select call. A bit set is a
string of bits where each possible member of the set is represented by a 0 or a 1. If
the member’s bit is 0, the member is not to be tested. If the member’s bit is 1, the
member is to be tested. Socket descriptors are actually small integers. If socket 3 is
a member of a bit set, then bit 3 is set; otherwise, bit 3 is zero.

Therefore, the server specifies 3 bit sets of sockets in its call to the SELECT
function: one bit set for sockets on which to receive data; another for sockets on
which to write data; and any sockets with exception conditions. The SELECT call

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
01 MAXSOC PIC 9(8) BINARY VALUE 50.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MILLISEC PIC 9(8) BINARY.

01 RSNDMASK PIC X(50).
01 WSNDMASK PIC X(50).
01 ESNDMASK PIC X(50).
01 RRETMASK PIC X(50).
01 WRETMASK PIC X(50).
01 ERETMASK PIC X(50).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMASK WSNDMASK ESNDMASK
RRETMASK WRETMASK ERETMASK
ERRNO RETCODE.

Figure 6. The SELECT Call

Chapter 2. Introduction to TCP/IP for IMS 19

tests each selected socket for activity and returns only those sockets that have
completed. On return, if a socket’s bit is raised, the socket is ready for reading data
or for writing data, or an exceptional condition has occurred.

The format of the bit strings is a bit awkward for an assembler programmer who is
accustomed to bit strings that are counted from left to right. Instead, these bit
strings are counted from right to left.

The first rule is that the length of a bit string is always expressed as a number of
fullwords. If the highest socket descriptor you want to test is socket descriptor
number three, you have to pass a 4-byte bit string, because this is the minimum
length. If the highest number is 32, you must pass 8 bytes (2 fullwords).

The number of fullwords in each select mask can be calculated as
INT(highest socket descriptor / 32) + 1

Look at the first fullword you pass in a bit string in Table 1.

Table 1. First Fullword Passed in a Bit String in Select

Socket
Descriptor
Numbers
Represented
by Byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 0 31 30 29 28 27 26 25 24

Byte 1 23 22 21 20 19 18 17 16

Byte 2 15 14 13 12 11 10 9 8

Byte 3 7 6 5 4 3 2 1 0

In these examples, we use standard assembler numbering notation; the left-most bit
or byte is relative zero.

If you want to test socket descriptor number 5 for pending read activity, you raise bit
2 in byte 3 of the first fullword (X'00000020'). If you want to test both socket
descriptor 4 and 5, you raise both bit 2 and bit 3 in byte 3 of the first fullword
(X'00000030').

If you want to test socket descriptor number 32, you must pass two fullwords,
where the numbering scheme for the second fullword resembles that of the first.
Socket descriptor number 32 is bit 7 in byte 3 of the second fullword. If you want to
test socket descriptors 5 and 32, you pass two fullwords with the following content:
X'0000002000000001'.

The bits in the second fullword represents the socket descriptor numbers shown in
Table 2.

Table 2. Second Fullword Passed in a Bit String in Select

Socket
Descriptor
Numbers
Represented
by Byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 4 63 62 61 60 59 58 57 56

20 z/OS V1R2.0 CS: IP IMS Sockets Guide

Table 2. Second Fullword Passed in a Bit String in Select (continued)

Socket
Descriptor
Numbers
Represented
by Byte

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7

Byte 5 55 54 53 52 51 50 49 48

Byte 6 47 46 45 44 43 42 41 40

Byte 7 39 38 37 36 35 34 33 32

If you develop your program in COBOL or PL/I, you may find that the EZACIC06
routine, which is provided as part of TCP/IP for MVS, will make it easier for you to
build and test these bit strings. This routine translates between a character string
mask (one byte per socket) and a bit string mask (one bit per socket).

In addition to its function of reporting completion on Read/Write events, the
SELECT call can also be used to determine completion of events associated with
the LISTEN and GIVESOCKET calls.

v When a connection request is pending on the socket for which the main process
issued the LISTEN call, it will be reported as a pending read.

v When the parent process has issued a GIVESOCKET, and the child process has
taken the socket, the parent’s socket descriptor is selected with an exception
condition. The parent process is expected to close the socket descriptor when
this happens.

IOCTL and FCNTL Calls
In addition to SELECT, applications can use the IOCTL or FCNTL calls to help
perform asynchronous (nonblocking) socket operations. An example of the use of
the IOCTL call is shown in “IOCTL” on page 95.

The IOCTL call has many functions; establishing blocking mode is only one of its
functions. The value in COMMAND determines which function IOCTL will perform.
The REQARG of 0 specifies non-blocking (a REQARG of 1 would request that
socket S be set to blocking mode). When this socket is passed as a parameter to a
call that would block (such as RECV when data is not present), the call returns with
an error code in RETCODE, and ERRNO set to EWOULDBLOCK. Setting the mode of
the socket to nonblocking allows an application to continue processing without
becoming blocked.

GIVESOCKET and TAKESOCKET Calls
The GIVESOCKET and TAKESOCKET functions are not supported with the IMS
TCP/IP OTMA Connection server. Tasks use the GIVESOCKET and TAKESOCKET
functions to pass sockets from parent to child.

For programs using TCP/IP for MVS, each task has its own unique 8-byte name.
The main server task passes three arguments to the GIVESOCKET call:
v The socket number it wants to give
v Its own name 6

v The name of the task to which it wants to give the socket

6. If a task does not know its address space name, it can use the GETCLIENTID function call to determine its unique name.

Chapter 2. Introduction to TCP/IP for IMS 21

If the server does not know the name of the subtask that will receive the socket, it
blanks out the name of the subtask. 7 The first subtask calling TAKESOCKET with
the server’s unique name receives the socket.

The subtask that receives the socket must know the main task’s unique name and
the number of the socket that it is to receive. This information must be passed from
main task to subtask in a work area that is common to both tasks.

v In IMS, the parent task name and the number of the socket descriptor are
passed from parent (Listener) to child (MPP) through the message queue.

v IN CICS, the parent task name and the socket descriptor number are passed
from the parent (Listener) to the transaction program by means of′ the EXEC
CICS START and EXEC CICS RETREIVE function.

Because each task has its own socket table, the socket descriptor obtained by the
main task is not the socket descriptor that the subtask will use. When
TAKESOCKET accepts the socket that has been given, the TAKESOCKET call
assigns a new socket number for the subtask to use. This new socket number
represents the same connection as the parent’s socket. (The transferred socket
might be referred to as socket number 54 by the parent task and as socket number
3 by the subtask; however, both socket descriptors represent the same connection.)

Once the socket has successfully been transferred, the TCP/IP address space
posts an exceptional condition on the parent’s socket. The parent uses the SELECT
call to test for this condition. When the parent task SELECT call returns with the
exception condition on that socket (indicating that the socket has been successfully
passed) the parent issues CLOSE to complete the transfer and deallocate the
socket from the main task.

To continue the sequence, when another client request comes in, the concurrent
server (Listener) gets another new socket, passes the new socket to the new
subtask, and dissociates itself from that connection. And so on.

Summary
To summarize, the process of passing the socket is accomplished in the following
way:

v After creating a subtask, the server main task issues the GIVESOCKET call to
pass the socket to the subtask. If the subtask’s address space name and subtask
ID are specified in the GIVESOCKET call, (as with CICS) only a subtask with a
matching address space and subtask ID can take the socket. If this field is set to
blanks, (as with IMS) any MVS address space requesting a socket can take this
socket.

v The server main task then passes the socket descriptor and concurrent server’s
ID to the subtask using some form of commonly addressable technique such as
the IMS Message Queue.

v The concurrent server issues the SELECT call to determine when the
GIVESOCKET has successfully completed.

v The subtask calls TAKESOCKET with the concurrent server’s ID and socket
descriptor and uses the resulting socket descriptor for communication with the
client.

v When the GIVESOCKET has successfully completed, the concurrent server
issues the CLOSE call to complete the handoff.

7. This is the case in IMS because the Listener has no way of knowing which Message Processing Region will inherit the socket.

22 z/OS V1R2.0 CS: IP IMS Sockets Guide

An example of a concurrent server is the IMS Listener. It is described in “Chapter 6.
How to Customize and Operate the IMS Listener” on page 55. Figure 5 on page 14
shows a concurrent server.

What You Need to Run IMS TCP/IP
IMS TCP/IP using the IMS Listener and IMS Assist Module is designed for use on
an MVS/SP host system running: IMS/ESA Version 4 or later.

A TCP/IP host can communicate with any remote IMS or non-IMS system that runs
TCP/IP. The remote system can, for example, run a UNIX or OS/2 operating
system.

TCP/IP Services
TCP/IP Services is not described in this book because it is a prerequisite for IMS
TCP/IP. However, much material from the TCP/IP library has been repeated in this
book in an attempt to make it independent of that library.

A Summary of What IMS TCP/IP Provides
Figure 7 on page 24 shows how IMS TCP/IP allows IMS applications to access the
TCP/IP network. It shows that IMS TCP/IP makes the following facilities available to
your application programs:

The sockets calls (1 and 2 in Figure 7 on page 24)

The socket API is available both in the C language and in COBOL, PL/I, or
assembler language. It includes the following socket calls:

Basic calls: socket, bind, connect, listen, accept, shutdown, close
Read/write calls: send, sendto, recvfrom, read, write
Advanced calls: gethostname, gethostbyaddr, gethostbyname, getpeername,

getsockname, getsockopt, setsockopt, fcntl, ioctl, select
IBM-specific calls: initapi, getclientid, givesocket, takesocket

Chapter 2. Introduction to TCP/IP for IMS 23

IMS TCP/IP provides for both connection-oriented and connectionless (datagram)
services, using the TCP and UDP protocols respectively. TCP/IP does not support
the IP (raw socket) protocol.

The Listener (3)

IMS TCP/IP includes a concurrent server application, called the Listener, to which
the client makes initial connection requests. The Listener passes the connection
request on to the user-written server, which is typically an IMS Message Processing
Program.

Conversion routines (4)

IMS TCP/IP provides the following conversion routines, which are part of the base
TCP/IP Services product:

v An EBCDIC-to-ASCII conversion routine, used to convert EBCDIC data within
IMS to the ASCII format used in TCP/IP networks and workstations. It is run by
calling module EZACIC04.

v A corresponding ASCII-to-EBCDIC conversion routine (EZACIC05).

v A module that converts COBOL character arrays into bit-mask arrays used in
TCP/IP. This module, which is run by calling EZACIC06, is used with the socket
SELECT call.

v A module that interprets a C language structure known as Hostent. (EZACIC08).

User
Applications TCP/IP

network

MVS

IMS

TCP/IP
for

MVS

Applications Operating
Environment

1. C language
socket calls

2. COBOL,Ass.
sockets calls

4. Conversion
routines

3. Listener

TCP/IP for IMS

Figure 7. How User Applications Access TCP/IP Networks with IMS TCP/IP

24 z/OS V1R2.0 CS: IP IMS Sockets Guide

Part 2. Using The IMS Listener

© Copyright IBM Corp. 1994, 2001 25

26 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 3. Principles of Operation

This chapter describes the operation of the Listener and the Assist module. Its
purpose is to explain how a TCP/IP-to-IMS connection is established, and how the
client and server exchange application data. For specific data formats and the
socket protocols used when coding a TCP/IP client or server, see “Chapter 4. How
to Write an IMS TCP/IP Client Program” on page 39 and “Chapter 5. How to Write
an IMS TCP/IP Server Program” on page 47.

Overview
The IMS TCP/IP feature consists of 3 components: the IMS Listener, the IMS Assist
module, and the Sockets Extended API. 8 The Sockets Extended API can either be
used independently, or with the other 2 components. When the Sockets Extended
interface is used independently, an IMS MPP can either serve as a client or as a
server.

When the IMS Listener is used, the IMS MPP acts as a server, and the TCP/IP
remote acts as the client. The Assist module is dependent upon the IMS Listener;
therefore, when the Assist module is used, IMS is the server.

Because the Listener and the Assist module are designed to support IMS as a
server, the next several chapters are based on that assumption. For a discussion of
IMS as client, see “When the Client is an IMS MPP” on page 36, later in this
chapter, and the sample program on “Sample Program - IMS MPP Client” on
page 171.

The Role of the IMS Listener
Since the IMS Transaction Manager does not support direct connection with TCP/IP,
some other program must establish that connection. When IMS is acting as a
server to a TCP/IP-connected client, that program is the IMS Listener — an IMS
batch message program (BMP) whose main function it is to establish connection
between the client and the requested IMS transaction.

When the client requests the services of an IMS message processing program
(MPP), it sends a message to the IMS host containing the transaction code of that
MPP. The IMS Listener receives that request and schedules the requested MPP; it
then holds the connection until the MPP starts and accepts the connection. Once
the MPP owns the connection, the Listener is no longer involved with it.

The Role of the IMS Assist Module
The IMS Assist module is a subroutine, called from an IMS MPP (server) that
translates conventional IMS communication calls into the corresponding socket
calls. Its use is optional. Its purpose is to shield the programmer from having to
understand TCP/IP programming. To exchange data with the client, the server
program issues traditional IMS message queue calls (GU, GN, ISRT). These calls
are intercepted by the Assist module, which issues the appropriate socket calls.

8. Shipped with the TCP/IP Services base product

© Copyright IBM Corp. 1994, 2001 27

Use of the IMS Assist Module — Pros and Cons
The Assist module makes message processing program (MPP) coding easier, but is
accompanied by a series of trade-offs. This section discusses the trade-offs
between implicit mode and explicit mode.

v Implicit-mode application programmers use conventional IMS Transaction
Manager (TM) calls and require no special training; explicit-mode application
programmers must understand TCP/IP socket calls and protocols.

v Implicit-mode transactions must adhere to constraints imposed by the IMS Assist
module. By contrast, explicit-mode transactions use the TCP/IP socket call
interface and have no specific protocol requirements other than the orderly
initiation and termination of the transaction.

v Implicit-mode transactions obtain their message input from the IMS message
queue. Since the Listener must put the input message segments on the queue
before the server begins execution, the client sends all application data with the
transaction request. Explicit-mode transactions bypass the message queue for all
application data — both input, and output.

v Implicit-mode transactions are limited to a single GU-GN/ISRT iteration (one input
of one or more segments, followed by one output of one or more segments) for
each message retrieved from the IMS message queue. By contrast, explicit-mode
transactions have no such limit. Unlimited read/write sequences make it possible
to design conversations in which the two programs talk back and forth without
limit. 9

Client/Server Logic Flow
The following section describes the flow of a client/server application through the
system — starting with the client and continuing on through the Listener to the
server. The complete transaction, including initiation, execution, and termination is
traced.

How the Connection is Established
The following paragraphs describe the functions the Listener performs in
coordinating between the client and the server. With the exception of paragraph 6,
the Listener performs the same steps for both explicit- and implicit-mode servers.
Paragraph numbers correspond to the step numbers in Figure 1.

9. Because of the potential for long running conversations, MPPs with multiple conversational iterations should be carefully designed
to avoid the possibility of extended message processing region occupancy.

28 z/OS V1R2.0 CS: IP IMS Sockets Guide

1. Connection request

The IMS Listener is an IMS batch message processing program (BMP). When
the Listener starts, it establishes a socket on which it can “listen” for connection
requests. It binds itself to the specified port, and then listens for requests from
TCP/IP clients. When a client sends a connection request, MVS TCP/IP notifies
the Listener of the request.

2. Connection processing

When the Listener receives a connection request, it issues a socket ACCEPT
call, which creates a new socket specifically for that connection.

3. Transaction-Request Message

IMS Message
Queue

Server

Connection
Request

Client

1

IMS Transaction Manager

MVS TCP/IP

IMS Listener

accept()

listen()

read TRM

verify transaction

ISRT TIM

read()
ISRT

givesocket()

SYNC

6*

5

4

3

2

1

client data}

7

8

*implicit-mode only

Figure 8. IMS TCP/IP Message Flow for Transaction Initiation

Chapter 3. Principles of Operation 29

The client then sends a transaction-request message (TRM) segment, which
includes the 8-byte name of the requested IMS server transaction (otherwise
known as the TRANCODE).

4. Transaction verification

The Listener performs several tests to ensure that the requested transaction
should be accepted:

v The TRANCODE is tested against IMS Listener configuration file
TRANSACTION statements to ensure that the requested transaction is
eligible to be executed from a TCP/IP client.

v If security data is included in the transaction-request message (TRM), that
data is passed to a user-written security exit. The purpose of this exit is to
validate the credentials of the client prior to allowing the transaction to be
scheduled.

v The Listener issues an IMS CHNG call to a modifiable alternate PCB,
specifying the TRANCODE of the desired transaction. It then issues an IMS
INQY call to ensure that the transaction is not stopped (due to previous
abend or Master Terminal Operator action).

The following actions depend on the results of the verification:

v If the transaction request is rejected, the IMS Listener returns a
request-status message (RSM) segment to the client with an indication of the
reason for rejecting the request; it then closes the connection.

v If the transaction request is accepted the requested transaction is scheduled
(the Listener does not return a status message to the client).

5. Transaction Initiation Message (TIM)

The Listener then inserts (ISRT) a transaction initiation message (TIM) segment
to the IMS message queue. This message contains information needed by the
server program when it takes responsibility for the connection. (Note that the
client sends the transaction request message (TRM) to the Listener; the
Listener sends the transaction initiation message (TIM) to the server.)

6. Client-to-server input data transfer (implicit mode only)

If the transaction is in implicit mode, the Listener reads the client-to-server input
data and places it on the message queue.

7. Pass the socket to the server

Next, the Listener issues a GIVESOCKET call, which makes the socket
available to the server program.

8. Schedule the transaction

Finally, the Listener issues an IMS SYNC call to schedule the requested IMS
transaction and waits for the server program to take responsibility for the
connection.

When the server issues a TAKESOCKET call, the Listener has completed its
responsibility for the socket and dissociates itself from the connection.

Note: The Listener is a never-ending IMS Batch Message Program, which
processes multiple concurrent transactions.

How the Server Exchanges Data with the Client
Once the server begins execution, the protocol to pass input data to the server is a
function of whether the transaction mode is explicit or implicit.

30 z/OS V1R2.0 CS: IP IMS Sockets Guide

Explicit-Mode Transactions
The following section describes an explicit-mode server program which exchanges
application data with a client.

Step numbers in Figure 2 correspond to the paragraph numbers below.

1. Once an explicit-mode server begins execution, it issues an IMS GU call to
obtain the transaction initiation message (TIM) segment, an INITAPI to establish
connection with MVS TCP/IP, and a TAKESOCKET call to establish direct
connection between client and server.

IMS Message
Queue

Server

Client

IMS Transaction Manager

MVS TCP/IP

IMS Listener

2

3

4

1

GU TIM

takesocket()

read()

write()

read()

write()

database calls

GU TIM

close()

Figure 9. IMS TCP/IP Message Flow for Explicit-Mode Input/Output

Chapter 3. Principles of Operation 31

2. Subsequently, socket READ and WRITE commands are used to exchange data
between client and server. The conversation can consist of any number of
database calls and socket READ/WRITE exchanges. 10 Client data is not
passed through the IMS message queue and is not subject to any predefined
protocols.

3. The transaction indicates completion by issuing another GU to the I/O PCB.
This notifies the Transaction Manager that the database changes should be
committed. At this point, the server program might send a message to the client
indicating that the database changes have been successfully completed.

If another message awaits this transaction, the GU will cause the first segment
of that message to be retrieved and the program should issue a new
TAKESOCKET call to start the process again.

4. When the GU call returns with a QC status code, the server ends the
conversation by closing the socket.

Implicit-Mode Transactions
The following section describes how the Assist module and the server program
interact to exchange application data with the client. The paragraph numbers
correspond to the step numbers in Figure 3.

10. Because of the potential for long running conversations, MPPs with multiple conversational iterations should be carefully designed
to avoid the possibility of extended message processing region occupancy.

32 z/OS V1R2.0 CS: IP IMS Sockets Guide

1. Server GU

GU must be the first IMS call issued by the server to the I/O PCB. The Assist
module retrieves the first segment from the message queue and examines it (for
LISTNR in the first field) to determine whether it is a transaction initiation
message. (If the message was not sent by the Listener, the Assist module
assumes the transaction was started by an SNA terminal and immediately
passes the input segment to the server. In this case, subsequent I/O PCB calls
(as well as database calls) are passed directly through to IMS without further
consideration.)

2. Transaction Initiation Message (TIM)

IMS
Message
Queue

Server

Client

IMSTM

MVS TCP/IP

Database calls and
I/O PCB calls can be
intermixed

IMS
Listener

Assist Module

GU TIM
takesocket()

GN appl data 1

GN appl data 2

GN appl data 3

accumulate output data

write() appl data 1

write() appl data 2

write() appl data 3

GU TIM

write() CSMOKY

close

GU IOPCB

GN IOPCB

GN IOPCB

ISRT IOPCB

ISRT IOPCB

ISRT IOPCB

GU IOPCB

*

1 2

3

4

5
6

7

8

*

Figure 10. IMS TCP/IP Message Flow for Implicit Mode Input/Output

Chapter 3. Principles of Operation 33

If the message was sent by the Listener, the initial message segment is the
transaction initiation message (TIM); the Assist module does not return it to the
server. Instead, the Assist module uses the TIM contents to issue the
TAKESOCKET to establish connection between the client and the server
program.

3. Server input data

Once the server owns the socket, the Assist module issues a GN to retrieve the
first segment of the client input message and returns it to the server program.
Thus, the server program never sees the TIM; it receives the first data segment
in response to its GU. Subsequent GN calls from the server cause the Assist
module to retrieve the remaining segments of the message. When the Assist
module reads the last input segment for that transaction from the message
queue, it receives a QD status code from IMS, which it returns to the server
program.

After the initial GU to the I/O PCB, server GN calls, ISRT calls, and database
calls can be intermixed.

4. Server output data

When the server program issues ISRT calls to send output message segments
to the client, the IMS Assist module accumulates the output segments, up to
maximum of 32KB, into a buffer.

5. Commit

The server signals completion by issuing a GU to the I/O PCB.

6. TCP/IP writes application data to the client.

When the server issues the GU, the Assist module issues WRITE calls to send
the data to the client and passes the GU to the IMS Transaction Manager to
commit the database changes.

7. Confirmation

If the GU is successful, (that is, QC status or spaces) the Assist module sends
a complete-status message segment (CSM) to the client to confirm the
successful commit and passes the status code back to the server.

8. Close the socket

Once the complete-status message has been sent to the client, the Assist
module closes the socket, ending the connection.

If the GU in the previous step resulted in a 'bb' status code (indicating
successful return of another message) the program logic returns to step 2 to
process the new message.

How the IMS Listener Manages Multiple Connection Requests
The IMS Listener uses 2 queues for the management of connection requests:

1. The backlog queue (managed by MVS TCP/IP) contains client connection
requests that have not yet been accepted by the Listener. If a client requests a
connection while the backlog queue is full, TCP/IP rejects the connection
request. The number of requests allowed in the backlog queue is specified in
the LISTENER startup configuration statement (BACKLOG parameter), see
“LISTENER Statement” on page 57.

2. The active sockets queue contains the sockets that are held by the Listener
while they wait for assignment to a server program. Once the Listener has
accepted the connection, the connection belongs to the Listener until it is
accepted by the server. If the Listener uses all of its sockets and cannot accept
any more connections, subsequent requests go into the backlog queue. The

34 z/OS V1R2.0 CS: IP IMS Sockets Guide

maximum number of sockets available is specified in the LISTENER startup
configuration statement, (MAXACTSKT parameter), see “LISTENER Statement”
on page 57.

Use of the IMS Message Queue
In conventional 3270 applications, the IMS message queue is a mechanism for
passing communications between an MPP and another entity, such as a 3270-type
terminal, or another message processing program (MPP). The IMS TCP/IP feature
uses the message queue for communication between the Listener and the MPP.
Messages from and to TCP/IP hosts bypass IMS message format services (MFS).
The following section describes how IMS TCP/IP uses the IMS message queue:

Input Messages
(Messages that are input to the MPP)

v Explicit-mode transactions only use the message queue to pass the transaction
initiation message (TIM) from the Listener to the server. All application data sent
by the client is received by the server using sockets READ calls, thus bypassing
the IMS message queue.

v Implicit-mode transactions use the message queue both for the TIM (which is
trapped by the Assist module and not passed on to the server) and for all
client-to-server application data (which is passed to the server in response to
IMS GU, GN calls).

Output Messages
All messages that are output from the server go directly via TCP/IP to the client;
they do not pass through the message queue.

v Explicit-mode servers use socket WRITE calls to send application data directly to
the client.

v Implicit-mode servers use the IMS ISRT call for output, but the inserted data is
trapped by the Assist module which, in turn, issues socket WRITE calls to send
the data to the client.

Call Sequence for the IMS Listener
Although you will probably not be writing a Listener program, it is important that you
match the sequence of calls issued by the Listener when you write your client
program. The Listener call sequence is:

Call Explanation of Function

INITIALIZE LISTENER

INITAPI
Connect the Listener to MVS TCP/IP at Listener startup. (This call is only
used in programs written to the Sockets Extended interface.

SOCKET
Create a socket descriptor.

BIND Allocate the local port for the socket. This port is used by clients when
requesting connection to IMS.

LISTEN
Create a queue for incoming connections.

WAIT FOR CONNECTION REQUEST

SELECT
Wait for an incoming connection request.

Chapter 3. Principles of Operation 35

ACCEPT
Accept the incoming connection request; create a new socket descriptor to
be used by the server for this specific connection.

READ Read TRM; determine the IMS TRANCODE.

CHNG Change the modifiable alternate PCB to reflect the desired IMS
TRANCODE.

INQY Ensure the desired IMS TRANCODE is available for scheduling.

ISRT Use the alternate PCB to insert the transaction initiation message (TIM) and
pass control information and user input data to the server.

GIVESOCKET
Pass the newly created socket to the server.

SYNC Schedule the requested transaction.

SELECT
Wait for the server to take the socket.

CLOSE
Release the socket.

END OF CONNECTION REQUEST

Return to ″WAIT FOR CONNECTION REQUEST″

SHUTDOWN LISTENER

CLOSE
Close the socket through which the Listener receives connection requests
from MVS TCP/IP.

TERMAPI
Disconnect the Listener from MVS TCP/IP before shutting down

Application Design Considerations
The following is a set of guidelines and limitations that should be considered when
designing IMP TCP/IP applications.

Programs That Are Not Started by the IMS Listener
It is expected that, in most cases, IMS server applications will be started by the IMS
Listener. Such programs are known as dependent programs because the Listener
establishes the TCP/IP connection.

Under some circumstances, application design considerations require that an
application establish its own connection between TCP/IP and IMS. For example, an
IMS MPP might require the services of a TCP/IP-connected UNIX processor.

An IMS application of this type is known as an independent program because it is
not started by the Listener. Because independent programs don’t use Listener
services, they must define their own protocol.

When the Client is an IMS MPP
In this manual, the underlying assumption is that the TCP/IP host acts as client and
the IMS MPP acts as server. However, this is not always the case.

For example, consider an IMS MPP that requires the services of a
TCP/IP-connected AIX* host. Such an MPP (acting as a client) initiates a TCP/IP

36 z/OS V1R2.0 CS: IP IMS Sockets Guide

conversation by issuing the client TCP/IP call sequence. The TCP/IP host would
respond with the server TCP/IP call sequence. This application design is supported
because the MPP communicates directly with MVS TCP/IP. The IMS TCP/IP feature
does not impose any unique restrictions on the type and usage of socket calls
executed by such a program; however, because of the unique and unstructured
communication requirements of this application design, you must use explicit mode
for this type of program.

Abend Processing
When a task that owns a socket fails, MVS TCP/IP closes the socket. Therefore,
when an IMS MPP abends, regardless of the reason, the socket is no longer
available and communication between server and client is no longer possible.

True Abends
If an IMS TCP/IP server program abends (for example, because of an S0Cx
condition), database changes in progress are backed out and the transaction task is
terminated. This breaks the TCP/IP connection. When the connection is broken, the
client receives a negative status code and an error number that indicates that the
connection has been broken. Upon receipt of this indication, the client should
assume that the transaction did not complete and that the database changes have
not been made. The client could reschedule the transaction, but the IMS TM will
have probably “stopped” it from further execution as a result of the abend.

The solution is to correct the reason for the abend and restart the transaction.

Pseudo Abends
Under certain situations IMS applications cannot complete. Upon such a condition,
IMS abends the MPR with a status code (usually U0777, U02478, U02479, or
U03303) and reschedules it. This action is not apparent to the conventional
3270-type user.

However, when an IMS TCP/IP transaction is pseudo-abended, the action is
apparent to the client because the connection between client and server is lost
when the server MPR is abended. In this case, IMS TM reschedules the transaction
and places the input message (including the TIM) back on the message queue.
When the transaction is rescheduled and issues a GU for the TIM, the socket
described in the TIM no longer represents a valid connection. and the associated
TAKESOCKET call will fail. At this time, the Assist module will detect the failure of
the socket call and return a ZZ status code to the server program. Upon receipt of
this status code, the server program should end normally.

Note: At the time of the pseudo-abend, the IMS TM backs out database changes,
so the client should restart the transaction.

An Alternative: As an alternative, for deadlock situations it is suggested that you
define the transaction as INIT STATUS GROUP B, which allows
the application program to regain control after a deadlock with a
BC status code (instead of terminating with a U0777 abend). This
allows the server program to regain control after the deadlock and
notify the client while the connection is still available. :elblbox

Implicit-Mode Support for ROLB Processing
If a server program issues the IMS ROLB call, all database changes are reversed,
and all output messages are erased from the IMS message queue. However, the

Chapter 3. Principles of Operation 37

client is not automatically notified of this action and will (when the transaction
completes normally) receive a CSMOKY message, indicating normal completion.

As a result, for transactions that conditionally issue the ROLB call, it is
recommended that the server send a message to the client indicating whether the
ROLB command was executed. Otherwise, the client might incorrectly interpret the
CSMOKY message to mean that database changes have been made (when in fact,
the message simply denotes successful termination of the transaction).

Restrictions
v Transactions must be defined as MODE=SNGL in the IMS TRANSACT macro;

this will ensure that the database buffers are emptied (flushed) to direct access
storage when the second and subsequent GU calls are issued.

v Transactions must not reference other systems (MSC is not supported).

v Transactions must not be conversational (that is, they must not use the IMS
Scratch Pad Area (SPA)).

38 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 4. How to Write an IMS TCP/IP Client Program

When writing an IMS TCP/IP client program, the programmer must follow
conventions established by the IMS Listener and by the IMS Assist module (if
used). This chapter describes the call sequences and input/output data formats to
be used by the client program. For server programming, see “Chapter 5. How to
Write an IMS TCP/IP Server Program” on page 47.

Note that, in the context of this chapter, a “client” is typically a TCP/IP host that is
requesting the services of an IMS message processing program (MPP). This is
considered to be the normal case. However, in some situations, an MPP can start
as a server and then (because it needs the services of another program) switch
roles from server to client.

In this chapter, the client will be assumed to be the TCP/IP host and the server, the
IMS MPP.

Client Program Logic Flow — General
For both explicit- and implicit-mode clients the logic flow is essentially the same:

The client initiates the request for a specific IMS MPP server by communicating
with MVS TCP/IP, which passes the request on to the IMS Listener. The Listener
schedules the transaction and the client then exchanges application data with the
server. When the transaction is complete, the connection is closed; each client
request for an IMS transaction requires a new TCP/IP connection.

The following two sections provide more details about the programming
requirements for explicit-mode and implicit-mode clients, respectively.

Explicit-Mode Client Program Logic Flow
When the client requests the services of an explicit-mode server, the only protocol
imposed by IMS TCP/IP is that the client must begin by establishing TCP/IP
connectivity and sending a transaction-request message (TRM).

The Listener uses contents of the transaction-request message (TRM) to determine
which transaction to schedule. If the request is not accepted (for example, because
of failure to pass the security exit, or because the transaction was stopped by the
IMS master terminal operator), the Listener returns a request-status message
(RSM) to the client with an indication of the cause of failure. (See “Request-Status
Message Segment” on page 44 for the format of the request-status message).

Once an explicit-mode client and server are in communication, there is no
predefined input/output protocol. Rules of the conversation are established by
agreement between the two programs. Any number of READ/WRITE calls can be
issued. Upon termination, the server program should commit any database
changes, notify the server of successful completion, and close the socket.

It is suggested that, when all database updates have been committed, the server
notify the client by sending a “success” message to the client. This notifies the
client that the transaction has completed properly and that all database updates
have been committed. Unless such a message is sent, the client has no way of
knowing that the transaction completed properly.

© Copyright IBM Corp. 1994, 2001 39

Explicit-Mode Client Call Sequence
The call sequence to be used by an explicit-mode client program is:

Call Explanation of Function

INITAPI Open the interface. (Only required for client programs that use MVS
TCP/IP socket calls).

SOCKET Obtain a socket descriptor.

CONNECT Request connection to the IMS Listener port.

WRITE Send a transaction-request message (TRM)

READ Test for successful transaction initiation 11

WRITE/READ Explicit-mode transactions can issue any number of READ or
WRITE socket call sequences.

READ Ensure that the server ended normally and that the database
changes are committed.

CLOSE Terminate the connection and release socket resources.

Explicit-Mode Application Data

Format
Explicit-mode clients must initiate the connection with the server by sending the
transaction-request message (TRM) to the IMS host. The format of this message is
defined later in this chapter. Explicit-mode application data is formatted according to
agreement between client and server. Explicit-mode imposes no application data
format requirements.

Data Translation.
In explicit-mode, application data translation from ASCII to EBCDIC (if necessary) is
the responsibility of the client and server programs. Data is not translated by the
IMS TCP/IP feature.

Network Byte Order
Fixed-point binary integers (used for segment lengths in TRM and RSM) are
specified using the TCP/IP network byte ordering convention (big-endian notation).
This means that if the high-order byte is stored at address n, the low-order byte is
stored at address n+1. (Little-endian notation stores the other way around).

MVS also uses the big-endian convention. Because this is the same as the network
convention, IMS TCP/IP MPP’s should not need to convert data from little-endian to
big-endian notation. If the client uses little-endian notation, it is responsible for the
conversion.

End-of-Message Indicator
IMS TCP/IP does not define an End-of-message indicator for explicit-mode
messages.

11. If the Listener is unable to initiate the transaction, it sends a request-status message (RSM) to the client indicating the reason for
failure. Therefore, the client must be prepared to receive that message. It is suggested that a convention be established that the
server initiate the conversation by sending an opening message. By following this convention, the client will receive either positive
or negative notification of transaction status before initiating application data exchange.

40 z/OS V1R2.0 CS: IP IMS Sockets Guide

Implicit-Mode Client Logic Flow
When the client requests the services of an implicit-mode client, the protocol is
predefined by IMS TCP/IP.

The client requests an IMS MPP by sending the transaction-request message
(TRM). (See “Transaction-Request Message Segment (Client to Listener)” on
page 43 for the format of the TRM.) The TRM includes the name of the transaction
the Listener is to schedule.

If the transaction cannot be scheduled (for example, because of failure to pass the
security exit, or because the transaction was stopped by the IMS master terminal
operator), the Listener returns the request-status message with an indication of the
cause of failure. (See “Request-Status Message Segment” on page 44 for the
format of the request-status message).

For implicit-mode applications, the input data stream consists of the TRM,
immediately followed by all segments of application data and an end-of
message-segment. The Listener uses the TRM contents to schedule the server and
then places the TIM and all of the application data on the IMS message queue for
retrieval by the Assist module.

Implicit-mode transactions are limited to one multisegment input message and one
multisegment output message. In other words, implicit-mode applications cannot
enter into conversations.

When the transaction is complete, the IMS Assist module sends a complete-status
message (CSMOKY) segment to the client. If the client receives this message, the
client can safely assume that the database changes have been committed. If the
client doesn’t receive this message, the client cannot determine what has
happened. The transaction may have completed normally and database changes
committed, or the transaction may have failed with database changes backed out.
For this reason, clients that work with implicit mode servers should include
application logic that, upon failure to receive the CSMOKY message segment,
re-establishes contact with IMS and confirms the success of the previously
submitted update.

Implicit-Mode Client Call Sequence
The call sequence to be used by an implicit-mode client program is:

Call Explanation of Function

INITAPI Open the interface. (Only required for client programs that use MVS
TCP/IP Sockets calls).

SOCKET Obtain a socket descriptor.

CONNECT Request connection to the IMS Listener port.

WRITE Send a transaction-request message (TRM).

WRITE Send server input data formatted as IMS segments

READ Receive response.

v If the request was rejected, a request-status message (RSM) will
be received.

v If the transaction was scheduled and executed properly,
application data will be received.

Chapter 4. How to Write an IMS TCP/IP Client Program 41

Thus, logic in the client must test the output message for the
characters *REQSTS* to distinguish between application data and a
request-status message (RSM).

READ Upon successful completion of the database updates, the Assist
module sends a complete-status message (*CSMOKY*) to the
client, indicating that the transaction has completed successfully.

If this message is not received, the client must assume that the
application failed to complete properly; in this case, a return code of
–1 and ERRNO (typically set to 54) will indicate that application
failed. The client must take whatever action is appropriate (for
example, reschedule the transaction, resynchronize data).

CLOSE Terminate the connection and release the socket resources

Implicit Mode Application Data Stream

Client-to-Server Data Stream
In implicit mode, the client sends the following data stream:

llzz transaction-request message (TRM) llzz application data segment 1 llzz
application data segment 2 (optional) llzz ... llzz application data segment n
(optional) 04zz end-of-message segment

WHERE:

ll is the length in bytes of this data segment in binary.

Server-to-Client Data Stream
Data received by the client is formatted (by the Assist module) as above. It consists
of n segments of application data including the CSM segment, followed by an
end-of-message segment.

Implicit-Mode Application Data

Format.
Data exchanged between implicit-mode client and server is transmitted in a format
that resembles an IMS message segment. These segments have the following
format: 12

Field Format Description

Length H Length of the data segment (including this
field)

Reserved (zz) CL2 Reserved field

Data CLn Client-supplied data

The length field contains the total length of the message in binary. The length (ll)
includes the length of the ll and zz fields.

Data Translation.
The IMS Listener tests the initial input data string (the TRM) to determine whether
the terminal is transmitting in ASCII. If the terminal is transmitting in ASCII, and the
transaction is defined as implicit-mode in the TRANSACTION configuration
statement, the Listener translates the ASCII application data into EBCDIC. Note that

12. This example uses Assembler language notation. See Chapter 7 for COBOL and PL/I equivalents.

42 z/OS V1R2.0 CS: IP IMS Sockets Guide

when data translation takes place, the entire application data portion of the segment
is translated from ASCII to EBCDIC, and vice versa; therefore, the segment should
contain only printable characters that are common to both character sets. (For
example, the EBCDIC cent sign and the ASCII left square bracket are both printable
in their respective native environments, but they are not translated because they do
not have an equivalent in the other character set.)

End-of-Message Segment.
The last segment in a message (either sent by the client, or received from the
server) is indicated by an end-of-message (EOM) segment. (See “End-of-Message
Segment (EOM)” on page 45).

v Implicit-mode messages sent by the client are received by the Listener. When the
client program sends an EOM segment, the Listener interprets the EOM as an
indication that no more message segments are to be received and inserts the
segments onto the IMS message queue.

v Implicit-mode messages received by the client are actually written by the Assist
module on behalf of the server program. When the server program sends
application data to the client (using the ISRT call), the Assist module intercepts
the output data and accumulates it in an output buffer. When the server program
issues a subsequent GU to the I/O PCB, the Assist module interprets the GU as
an indication that the server has inserted the last segment for that message. The
Assist module then adds an end-of-message segment to the output data and
issues WRITE commands, which transmit the data to the client. (The client
program should test for the EOM segment to determine when the last segment of
the message has been sent by the server program.)

IMS TCP/IP Message Segment Formats
The client sends or receives several types of message segments whose formats
are defined by the Listener and the Assist module.
v Transaction-request message segment (TRM)
v Request-status message segment (RSM)
v Complete-status message segment (CSMOKY)
v End-of-message segment (EOM)

The following paragraphs describe the formats for each of these segments:

Transaction-Request Message Segment (Client to Listener)
To initiate a connection with an IMS server, the client first issues a
transaction-request message segment (TRM), which tells the Listener which
transaction to schedule.

The format of the transaction-request message segment (TRM) is:

Field Format Meaning

TRMLen H Length of the segment (in binary) including
this field. This field is sent in network byte
order.

TRMRsv CL2 Reserved

TRMId CL8 Identifying string. Always *TRNREQ*. If the
client data stream will be sent in ASCII, the
TRMId field should also be transmitted in
ASCII because the Listener uses this field to
determine whether ASCII to EBCDIC
translation is required.

Chapter 4. How to Write an IMS TCP/IP Client Program 43

Field Format Meaning

TRMTrnCod CL8 The transaction code (TRANCODE) of the
IMS transaction to be started. It must not
begin with a / character; it must follow the
naming rules for IMS transactions. If the
Listener has determined that data will be
transmitted in ASCII, it translates the
transaction code to EBCDIC before any
further processing is done.

TRMUsrDat XLn This variable-length field contains client data
that is passed directly to the security exit
without translation.

Request-Status Message Segment
If a transaction request is accepted, the IMS Listener does not send the
request-status message segment; if the transaction request is rejected, the IMS
Listener sends a request-status message segment (RSM) to the client. This
segment has the following format:

Field Format Description

RSMLen H Length of message (in binary), including this
field.

RSMRsv CL2 Reserved

RSMId CL8 Identifying string. Always *REQSTS*. This
field is translated to ASCII if the Listener has
determined that the client is transmitting in
ASCII.

F Return code, sent in
network byte order.
Set to nonzero (for
example, 4, 8, 12) to
indicate an error. The
nonzero value is
further explained by
the reason code
(RSMRsnCod).

RSMRsnCod F Reason Code, sent in network byte order.
Reason codes 0 — 100 are reserved for use
by the IMS Listener. Codes greater than 100
can be assigned by the user-written security
exit.

Request-Status Message Reason Codes
If the IMS Listener sends a request-status message (RSM) segment to the client
(indicating that it is unable to complete the processing of the client’s
transaction-request message (TRM), it sets the return and reason code in the RSM.

v If the security exit rejects a transaction request, it sets the return code and
reason code, and returns control to the Listener, which sends the request-status
message segment to the client.

v If the Listener detects other errors that cause a request to be rejected, it sets a
return code of 8 and a reason code from the following list.

1 The transaction was not defined to the IMS Listener.

44 z/OS V1R2.0 CS: IP IMS Sockets Guide

2 An IMS error occurred and the transaction was unable to be started.

3 The transaction failed to perform the TAKESOCKET call within the 3
minute timeframe.

4 The input buffer is full as the client has sent more than 32KB of data for
an implicit transaction.

5 An AIB error occurred when the IMS Listener tried to confirm if the
transaction was available to be started.

6 The transaction is not defined to IMS or is unavailable to be started.

7 The transaction-request message (TRM) segment was not in the correct
format.

9 The application data buffer for the Client-to-Server Data Stream contains
an invalid value for the data segment length.

100 up
Reason codes of 100 or higher are defined by the user-supplied security
exit.

Complete-Status Message Segment
The complete-status message segment is sent by the Assist module to indicate the
successful completion of an implicit-mode transaction, including the fact that
database updates have been committed. The format of the complete-status
message segment is:

Field Format Description

Length H Length of the data segment (in binary)
including this field

CSMRsv H Reserved field; must be set to zero

CSMId CL8 *CSMOKY* This field is translated to ASCII if
the client is transmitting in ASCII.

End-of-Message Segment (EOM)
The end-of-message segment is defined as an IMS-type segment (with llzz fields)
but no application data. Thus, the EOM segment has an llzz field of '0400'; 04 is the
length of the llzz field.

PL/I Coding
PL/I programmers should note that (although the segments exchanged between the
Listener and implicit-mode servers resemble IMS segments) the segments are
actually sent by TCP/IP socket calls and do not necessarily follow the standard IMS
convention for the PL/I language interface. Specifically, the length field in a segment
(TRM or RSM), which is passed via a TCP/IP socket call, must be a halfword
(FIXED BIN(15)) and not a fullword.

Chapter 4. How to Write an IMS TCP/IP Client Program 45

46 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 5. How to Write an IMS TCP/IP Server Program

When writing an IMS TCP/IP server program, the programmer must follow
conventions established by the IMS Listener; by the IMS Assist module (if the
server program uses it); and by the TCP/IP client. This chapter describes the call
sequences and input/output formats necessary for communication between a
TCP/IP client program and an IMS server program. (See “Chapter 4. How to Write
an IMS TCP/IP Client Program” on page 39 for a discussion of client programming).

Server Program Logic Flow —General
An IMS TCP/IP server program is executed in response to a transaction request
from a TCP/IP host. The server program can either explicitly issue TCP/IP socket
calls, or implicitly issue them through the IMS Assist module. However, the same
TCP/IP functions are completed in either case.

The following sections describe the server logic flow for each mode.

Explicit-Mode Server Program Logic Flow
When an explicit-mode server begins execution, the Listener has received the
transaction-request message (TRM) from the client and has inserted the
transaction-initiation message (TIM) to the IMS message queue. The Listener has
also issued a GIVESOCKET call to pass the connection to the server.

The server’s first action is to obtain the TIM from the IMS message queue. This
message contains the information needed to issue the INITAPI and TAKESOCKET
calls.

Once the server has issued the TAKESOCKET call, the connection is between
client and server; the two can now communicate directly using socket READ/WRITE
calls. The number of reads/writes, and the format of the data exchanged, is
determined by agreement between the two programs.

At the end of processing a client’s request, the application program should follow
the IMS DC programming standard of issuing another GU to the IO/PCB. This
informs IMS that the database changes should be committed, and that the database
buffers should be emptied (flushed).

Note: For this reason, a transaction invoked by a TCP/IP client should be defined
(by the IMS-gen TRANSACT macro) as MODE=SNGL.

Explicit-Mode Call Sequence
The suggested call sequence for an explicit-mode server follows. See “Chapter 7.
Using the CALL Instruction Application Programming Interface (API)” on page 61 for
the call syntax of the socket calls.

Server call Explanation of Function

CALL CBLTDLI (GU) I/O PCB Obtain transaction-initiation message (TIM) from
IMS message queue.

INITAPI Initialize the connection with TCP/IP.

Parameter Meaning

© Copyright IBM Corp. 1994, 2001 47

ADSNAME Server address space
(TIMSrvAddrSpc from the TIM)

SUBTASK Server task ID (TIMSrvTaskID from
the TIM)

TCPNAME TCP address space
(TIMTCPAddrSpc from the TIM)

TAKESOCKET Accept the socket from the Listener.

Parameter Meaning

CLIENT.name Listener address space
(TIMLstAddrSpc from the TIM)

CLIENT.task Listener task ID (TIMLstTaskID from
the TIM)

SOCRECV Socket descriptor (TIMSktDesc
from the TIM)

Note that the TAKESOCKET call returns a new
socket descriptor which must be used for the rest of
the process. (Do not continue to use the descriptor
passed by the Listener in TIMSktDesc.)

READ/WRITE Exchange application data with the client.

Database calls Read/write database records.

Note: TCP/IP and database calls can be
intermixed.

GU Force IMS synchronization point; update the
database from the buffers.

WRITE Send complete-status message to the client.

CLOSE Shut down the socket and release resources
associated with it.

TERMAPI End processing on the call interface.

Explicit-Mode Application Data

Format
Other than the initial transaction-initiation message, explicit-mode imposes no
restrictions on the format of application data exchanged between client and server.

EBCDIC/ASCII Data Translation
If the TCP/IP host is transmitting ASCII data, explicit-mode servers are responsible
for data translation from EBCDIC to ASCII, and vice versa. Data translation is not
performed by IMS TCP/IP. (The data translation subroutines (EZACIC04 and
EZACIC05), described in “Chapter 7. Using the CALL Instruction Application
Programming Interface (API)” on page 61 can be used for this purpose.)

When the conversation is complete, the server should force an IMS commit and
close the connection. This causes IMS to complete the database updates.
Explicit-mode server logic is responsible for notifying the client of the success or
failure of the commit process.

48 z/OS V1R2.0 CS: IP IMS Sockets Guide

Transaction-Initiation Message Segment
Once the server has been started, the first segment it receives from the message
queue is the transaction-initiation message (TIM) segment, which was created by
the IMS Listener.

Field Format Explanation

TIMLen 13 H The length of the
transaction-initiation message
segment (in binary), including
the length of this field.
(X'0038')

TIMRsv H Reserved field set to zero.
(X'0000').

TIMId CL8 Identifies the message as
having been created by the
IMS Listener. Always contains
the characters *LISTNR*.

TIMLstAddrSpc CL8 Listener address space
name. Used in server
TAKESOCKET.

TIMLstTaskId CL8 Listener task ID. Used in
server TAKESOCKET.

TIMSrvAddrSpc CL8 Server address space name.
Used in server INITAPI.
Server address space IDs are
generated by the Listener and
consist of the 2-character
prefix specified in the Listener
configuration file (Listener
statement) followed by a
unique 6-character
hexadecimal number.

TIMSrvTaskID CL8 Server task ID. Used in
server INITAPI.

TIMSktDesc H Contains the descriptor of the
socket given by Listener.
Used in server
TAKESOCKET.

TIMTCPAddrSpc CL8 The TCP/IP address space
name of TCP/IP. Used in
INITAPI.

TIMDataType H Indicates the data type of the
client messages: ASCII(0) or
EBCDIC(1).

Program Design Considerations
v Because MVS TCP/IP ends the connection when a server MPP completes, the

client has no way of knowing that the database changes have been committed.
Therefore, it is suggested that explicit-mode servers send a message to the client
confirming the COMMIT before terminating. (Implicit-mode servers send the
CSMOKY segment when the database changes have been committed.)

13. If you use PL/I, you must define the LLLL field as a binary fullword.

Chapter 5. How to Write an IMS TCP/IP Server Program 49

v When an explicit-mode server issues a ROLB command, the client has no
automatic way of knowing that the database updates have been rolled back. It is
suggested, therefore, that the server send a message to the client when a
rollback call completes.

I/O PCB — Explicit-Mode Server
When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS
returns information about the results of the call in a control block called the I/O
program control block (I/O PCB). The contents of the I/O PCB are:

LTERM NAME Blanks (8 bytes)

RESERVED X'00' (2 bytes)

STATUS CODE See below (2 bytes)

DATE/TIME Undefined (8 bytes)

INPUT MSG. SEQ. # Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME
Blanks (8 bytes)

USERID PSBname of Listener (8 bytes)

Status Codes
The I/O PCB status code is set by IMS in response to the server GU for the TIM. A
status code of bb indicates successful completion of the GU call. Since the only
data explicit-mode servers receive from the message queue is the TIM, the only call
issued by the server is a GU, requesting a new TIM. Thus, the only status codes an
explicit-mode server should receive are bb, which indicates successful completion of
the GU; and QC, which indicates that there are no more messages on the message
queue for that transaction. In response to the QC status code, the server program
should end normally.

Explicit-Mode Server — PL/I Programming Considerations
PL/I programmers should note that I/O areas used to retrieve IMS segments must
follow standard IMS conventions. That is, the length field for the TIM segment must
be defined as a fullword (FIXED BIN(31)).

Implicit-Mode Server Program Logic Flow
An implicit-mode server must perform all of the functions previously described for
an explicit-mode server (see “Explicit-Mode Server Program Logic Flow” on
page 47). However, the IMS Assist module issues the TCP/IP calls on behalf of the
server program; consequently, the implicit-mode application programmer need only
issue standard IMS Input/Output calls.

Implicit-Mode Server Call Sequence
When writing an implicit-mode program, you must call the IMS Assist module
(CBLADLI, PLIADLI, ASMADLI, CADLI, as appropriate for the language you are
using) instead of the conventional IMS equivalent (CBLTDLI, PLITDLI, ASMTDLI,
CTDLI). This will cause the I/O PCB calls to be intercepted and processed (if
necessary) by the Assist module. The Assist module will pass database calls
directly to IMS for processing; it will intercept I/O PCB calls and issue the
appropriate sockets calls. A sample call sequence (using COBOL syntax) for an
implicit-mode server follows:

IMS Server Call Resulting Assist Module Function

50 z/OS V1R2.0 CS: IP IMS Sockets Guide

CALL CBLADLI (GU) I/O PCB
Issue CALL CBLTDLI (GU) to obtain the (TIM).

CALL CBLADLI (GN) I/O PCB
(optional) Issue CALL CBLTDLI (GN), which returns
a subsequent segment of client input data for each
call.

CALL CBLADLI 14 Read/write database records. 15

CALL CBLADLI (ISRT) I/O PCB
Store segments in the sockets output buffer.

CALL CBLADLI (GU) I/O PCB
Issue WRITE to empty output buffers.

Implicit-Mode Application Data

Format.
All data exchanged between the client and an implicit-mode server is formatted into
IMS segments. Each data segment has the following format:

Field Format Description

Length H Length of the data segment
(in binary) including this field.

Reserved H Reserved field; must be set to
zero.

Data CLn Application data.

Data Translation.
Translation of input data (when necessary) is done by the Listener. As a result, all
data on the IMS message queue is in EBCDIC; output data is translated (when
necessary) by the Assist module.

Note that when data translation takes place, the entire application data portion of
the segment is translated from ASCII to EBCDIC, and vice versa; therefore, the
segment should contain only printable characters common to both character sets.
(For example, the EBCDIC cent sign and the ASCII left bracket are both printable in
their respective environments but are not translated because they do not have an
equivalent in the other character set.)

End-of-Message Segment.
The last segment in a message (either sent by the client, or received from the
server) is indicated by an end-of-message (EOM) segment. (See “End-of-Message
Segment (EOM)” on page 45).

v Implicit-mode messages sent by the client are received by the Listener and
inserted onto the IMS message queue. The end-of-message segment (defined
above) indicates to the Listener that there are no more segments to be inserted
for this message. (Note that the server program will not receive the EOM
segment; it will receive a QD status code, indicating that there are no more
segments for this message.)

14. For database I/O, you can use either CBLTDLI or CBLADLI. The Assist module simply converts database calls from CBLADLI to
CBLTDLI.

15. Database PCB and I/O PCB calls can be intermixed.

Chapter 5. How to Write an IMS TCP/IP Server Program 51

v Implicit-mode messages to be sent by the server are actually written by the
Assist module on behalf of the server program. When the server program sends
application data to the client (using the ISRT call), the Assist module intercepts
the output data and accumulates it in an output buffer. When the server program
issues a subsequent GU to the I/O PCB, the Assist module interprets the GU as
an indication that the server has inserted the last segment for that message. The
Assist module then adds an end-of-message segment to the output data and
issues WRITE commands, which transmit the data to the client. (Note that the
server program should not attempt to insert an EOM segment to the I/O PCB.)

Programming to the Assist Module Interface
Programs written to the Assist module interface are very similar (in terms of I/O
calls) to conventional IMS Transaction Manager (TM) MPPs.

v To communicate with IMS TM, use the following calls (depending upon
programming language) — CBLADLI, PLIADLI, ASMADLI, or CADLI — instead of
CBLTDLI, PLITDLI, ASMTDLI, and CADLI, respectively.

v Use the same parameters as with the IMS TM counterparts.

v The first IMS call to the I/O PCB must be GU. Subsequent IMS calls to the I/O
PCB can be GN and/or ISRT (with intervening database calls, as appropriate).

v When the transaction is complete, the server program should issue another GU
to the I/O PCB to finalize processing of the present message. If the server
program receives a bb status code, (indicating another message has been
received for that program), it should loop back and process that message. Note
that the Assist module will have closed the previous connection and opened a
new connection associated with the new message. When the GU returns a QC
status code, no more messages have been received for that program and the
program should end.

A set of one GU, one or more GN calls, and one or more ISRT calls to the I/O
PCB (with intervening database calls, as required) constitute a transaction. The
Assist module interprets each GU as the start of a new transaction.

v The PURG call cannot be used to indicate end-of-message; the server should
not issue PURG calls to the I/O PCB.

v The Assist module GU reads the TIM into the I/O area defined in the server
program; consequently, the I/O area you define in the server must be at least 56
bytes in length (the length of the TIM).

v If the server program attempts to insert more than 32KB, the Assist module flags
this as an error by terminating processing and returning a status code of ZZ.

Implicit-Mode Server PL/I Programming Considerations
PL/I programmers should note that I/O areas passed to the Assist module must
follow standard IMS conventions. That is, the length field for a segment must be
defined as a fullword (FIXED BIN(31)). This applies to both input and output data
segments; however, the actual segment that is received from and sent to the client
uses a halfword (FIXED BIN(15)) length field. Thus, the messages exchanged
between the client and server are programming-language independent.

Implicit-Mode Server C Language Programming Considerations
The following statements are required in IMS implicit-mode servers written in C
language:

#pragma runopts(env(IMS),plist(IMS))
#pragma linkage(cadli, OS)

52 z/OS V1R2.0 CS: IP IMS Sockets Guide

This is in addition to the standard requirements for using C language programs in
IMS.

I/O PCB Implicit-Mode Server
When an IMS MPP issues a call for IMS TM services (like a GU or an ISRT), IMS
returns information about the results of the call in a control block called the I/O
program control block (I/O PCB). When using the Assist module, the contents of the
I/O PCB are:

LTERM NAME Blanks (8 bytes)

RESERVED See below (2 bytes)

STATUS CODE See below (2 bytes)

DATE/TIME Undefined (8 bytes)

INPUT MSG. SEQ. # Undefined (4 bytes)

MESSAGE OUTPUT DESC. NAME
Blanks (8 bytes)

USERID PSBname of Listener (8 bytes)

Status Codes
The I/O PCB status code is set by IMS in response to the IMS calls that the Assist
module makes on behalf of the server. For example, GU and GN calls usually result
in bb, QC, or QD status codes. However, when the Assist module detects a TCP/IP
error, it sets the status code field of the I/O PCB to ZZ with further information about
the error in the reserved field of thE I/O PCB. This field should be initially tested as
a signed, fixed binary halfword:

v If the halfword is positive, then a socket error has occurred, and the field should
continue to be treated as a signed fixed binary halfword. The field contains the 2
low-order bytes from the ERRNO resulting from the socket call. (See
“Appendix A. Return Codes” on page 193).

v If the halfword is negative, then an IMS or other type of error has occurred, and
the field should be treated as a fixed-length, 2-byte character string containing
one of the following:

Code Meaning

EA A call that used the AIB interface to determine the I/O PCB address
failed.

EB The output buffer is full. An attempt was made to insert (ISRT) more than
32KB (including the segment length and reserved bytes) to be sent to the
client.

EC A QD status code was received in response to a GU or ROLB call when
attempting to retrieve the first segment of data after the
transaction-initiation message (TIM) segment. This implies that the client
sent only the TIM segment followed by an end-of-message segment with
no actual data segments.

Chapter 5. How to Write an IMS TCP/IP Server Program 53

54 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 6. How to Customize and Operate the IMS Listener

The IMS Listener is an IMS batch message program (BMP) whose main purpose is
to validate connection requests from TCP/IP clients and to schedule IMS message
processing programs (MPP) servers.

This chapter describes the IMS Listener and the user-written security exit that can
be used to validate incoming transaction requests.

How to Start the IMS Listener
The IMS Listener is executed as an MVS 'started task' using job control language
(JCL) statements. Copy the sample job in the hlq.SEZAINST(EZAIMSJL) to your
system or recognized PROCLIB and modify it to suit your conditions. Below is a
sample of the JCL needed for the Listener BMP. Note the STEPLIB statements
pointing to MVS TCP/IP. Also note the EZAIMSJL G.LSTNCFG DD statement points to
the Listener configuration file. For more information on configuring the IMS Listener,
see “The IMS Listener Configuration File” on page 56.

Once you have configured your JCL, you can start the Listener using the MVS
START command. The basic syntax and parameters of this command are given
below.

BB START procname
.identifier

BC

procname
The name of the cataloged procedure that defines the IMS Listener job to be
started.

identifier
A user-determined name which, with the procedure name, (procname) uniquely
identifies the started job. This name can be up to 8 characters long with the first
character being alphabetic. If the identifier is omitted, MVS automatically uses
the procedure name as the identifier.

.*
//EZAIMSJL PROC MBR=EZAIMSLN,PSB=EZAIMSLN,IMSID=IMS,CFG=TCPIMS,SOUT=A
//*
//LISTENER EXEC PROC=IMSBATCH,MBR=&MBR,SOUT=&SOUT,IMSID=&IMSID,
// PSB=&PSB,CPUTIME=1440
//G.STEPLIB DD DSN=IMSVS31.&SYS2.RESLIB,DISP=SHR
// DD DSN=IMSVS31.&SYS2.PGMLIB,DISP=SHR
// DD DSN=TCPIP.SEZALINK,DISP=SHR
// DD DSN=TCPIP.SEZATCP,DISP=SHR
//G.LSTNCFG DD DSN=TCPIP.LSTNCFG(&CFG.),DISP=SHR
//G.SYSPRINT DD SYSOUT=&SOUT,DCB=(LRECL=137,RECFM=VBA,BLKSIZE=1374),
// SPACE=(141,(2500,100),RLSE,,ROUND)

Figure 11. Sample JCL for starting the IMS Listener

© Copyright IBM Corp. 1994, 2001 55

How to Stop the IMS Listener
The Listener is normally ended by issuing an MVS MODIFY command. The syntax
of this command and a description of the parameters is given below.

BB MODIFY identifier
procname.

, STOP BC

procname
The name of the cataloged procedure that was used to start the Listener. This
is only required if an identifier that was different from procname was specified
with the START command when the Listener was started.

identifier
The user-determined identifier used on the START command when the Listener
was started. If an explicit identifier was not specified (on the START command),
MVS automatically uses the procedure name (procname) on the START
command as the default identifier.

stop
Stops the Listener.

On receipt of a MODIFY command, the Listener closes the socket bound to the
listening port so that no new requests can be accepted. It ends once all other
sockets have been closed following acceptance of each socket by the
corresponding server.

As a BMP, the Listener can be forcibly ended by issuing the IMS STOP REGION
command with the ABDUMP option.

The IMS Listener Configuration File
The IMS Listener obtains startup parameters from a configuration file. In Figure 11
on page 55 the EZAIMSJL G.LSTNCFG DD statement points to the Listener
configuration file. This statement will be in the JCL sample you customize.

The configuration file contains three types of statements which must appear in the
following order:
1. TCPIP statement
2. LISTENER statement
3. TRANSACTION statements

The following describes each of the configuration statements and their respective
parameters.

TCPIP Statement
Description: This statement is required and is used to specify the name of the
TCP/IP address space.

BB TCPIP ADDRSPC=name BC

56 z/OS V1R2.0 CS: IP IMS Sockets Guide

ADDRSPC= name
Specifies the name of the TCP/IP address space. The name can be 1 to 8
characters long, consisting of the numbers 0–9, the letters A–Z, and the
characters $, @, and #.

LISTENER Statement
Description: This statement is required. It is used to specify configuration
information used by the IMS Listener.

BB LISTENER PORT=port MAXTRANS=maxtrans MAXACTSKT=maxskt B

B ADDRSPCPFX=prefix
BACKLOG=10

BACKLOG=backlog
BC

PORT= port
Port number that the Listener binds to for connection requests. Use an integer
between 0 and 65 535, inclusive.

MAXTRANS= maxtrans
The maximum number of TRANSACTION statements to be processed in the
configuration file. Use an integer between 1 and 32 767, inclusive.

MAXACTSKT= maxskt
The maximum number of sockets the Listener can have open awaiting an MPP
TAKESOCKET at one time. This value is an integer from 1 to 2000, inclusive.
The number includes the socket bound to the port through which it accepts
incoming requests.

ADDRSPCPFX= prefix
One or two characters (consisting of the numbers 0–9, the letters A–Z, and the
characters $, @, and #) used in generating unique identifiers for started IMS
transactions.

BACKLOG= backlog
This parameter is optional and is used to specify the length of the backlog
queue maintained in TCP/IP for connection requests that have not yet been
assigned sockets by the Listener. Use an unsigned number from 1 to 32 767
inclusive. The default value is 10.

TRANSACTION Statement
Description: This statement specifies which transactions can be started by the
Listener. One statement is required for each transaction that can be initiated by a
TCP/IP-connected client.

Note that the transactions named here are subject to limitations:

v They must be defined to IMS as MODE=SNGL in the IMS TRANSACT macro;
this will ensure that the database buffers are emptied (flushed) to direct access
storage when the second and subsequent GU calls are issued.

v They must not be IMS conversational transactions.

v They cannot name transactions that are executed in a remote Multiple Systems
Coupling (MSC) environment.

v They must not use Message Format Services for messages to the client.

Chapter 6. How to Customize and Operate the IMS Listener 57

BB TRANSACTION NAME=transid TYPE= EXPLICIT
IMPLICIT

BC

NAME= transid
The name of an IMS transaction that is designed to interact with a
TCP/IP-connected program. This parameter must be 1 to 8 characters long,
containing alphanumeric characters, or the characters @, $, and #.

TYPE=
This parameter specifies whether the transaction uses the IMS Assist module. It
must specify either EXPLICIT or IMPLICIT.

The IMS Listener Security Exit
The IMS Listener includes an exit (IMSLSECX), which can be programmed by the
user to perform a security check on the incoming transaction-request. This Listener
exit can be designed to validate the contents of the UserData field in the transaction
request message.

To use the user-supplied security exit, you must define an entry point named
IMSLSECX. If a module with this name is link-edited with the Listener (EZAIMSLN)
load module, the security exit is called as part of transaction verification. The
security exit is called using standard MVS linkage with register 1 (R1) pointing to
the parameter list (described below). Note that the security exit must have the
attribute AMODE(31).

The exit returns 2 indicators: a return code and a reason code. The Listener uses
the return code to determine whether to honor the request. Both the return code
and the reason code are passed back to the client. Data passed in the UserData
field is not translated from ASCII to EBCDIC; this translation is the responsibility of
the security exit. (EZACIC05 and EZACIC04 can be used to accomplish translation
between ASCII and EBCDIC. See the chapter on CALL instructions in z/OS
Communications Server: IP Application Programming Interface Guide for a
description of these utilities.)

The format of the data passed to the security exit is:

Field Format Description

IpAddr F The address of a fullword containing the
client’s IP address.

Port H The address of a halfword containing the
client’s port number.

TransNam CL8 The address of an 8-character string defining
the name of the requested transaction.

DataType H The address of a halfword containing the
data type (0 if ASCII or 1 if EBCDIC).

DataLen F The address of a fullword containing the
length of the user data.

Userdata XLn The address of the user-supplied data.

RetnCode F The address of a fullword set by the security
exit to indicate the return status. Set to
nonzero (4, 8, 12, ...) to indicate an error.

58 z/OS V1R2.0 CS: IP IMS Sockets Guide

Field Format Description

ReasnCode F The address of a fullword set by the security
exit as a reason code associated with the
value of the return code. Reason codes
0–100 are reserved for use by the Listener.
The security exit can use reason codes
greater than 100.

TCP/IP Services Definitions
To run IMS, you need to modify the tcpip.PROFILE.TCPIP data set and the
hlq.TCPIP.DATA 16 data set that are part of the TCP/IP Services configuration file.

The hlq.PROFILE.TCPIP Data Set
You define the IMS socket Listener to TCP/IP on MVS in the hlq.PROFILE.TCPIP
data set. In it, you must provide entries for the IMS socket Listener started task
name in the PORT statement, as shown in Figure 12 on page 60.

The format for the PORT statement is:

BB port_number TCP IMS_socket_Listener_jobname BC

As an example, assume you want to define two different IMS control regions.
Create a different line for each port that you want to reserve. Figure 12 on page 60
shows 2 entries, allocating port number 4000 for SERVA, and port number 4001 for
SERVB. SERVA and SERVB are the names of the IMS socket Listener started task
names.

These 2 entries reserve port 4000 for exclusive use by SERVA and port 4001 for
exclusive use by SERVB. The Listener transactions for SERVA and SERVB should
be bound to ports 4000 and 4001 respectively. Other applications that want to
access TCP/IP on MVS are prevented from using these ports.

Ports that are not defined in the PORT statement can be used by any application,
including SERVA and SERVB if they need other ports.

16. Note: in this book, the abbreviation hlq stands for an installation-dependent high level qualifier which you must supply.

Chapter 6. How to Customize and Operate the IMS Listener 59

The hlq.TCPIP.DATA Data Set
For IMS, you do not have to make any extra entries in hlq.TCPIP.DATA. However,
you need to check the TCPIPJOBNAME parameter that was entered during TCP/IP
Services setup. This parameter is the name of the started procedure used to start
the TCP/IP MVS address space. This must match the job name in the Listener
configuration file TCPIP statement, as described in “TCPIP Statement” on page 56.
In the example below, TCPIPJOBNAME is set to TCPV3. The default name is
TCPIP.

;
; hlq.PROFILE.TCPIP
; ===================
;
; This is a sample configuration file for the TCPIP address space.
; For more information about this file, see "Configuring the TCPIP
; Address Space" and "Configuring the Telnet Server" in the Planning and
; Customization Manual.

..........

..........
; --
; Reserve PORTs for the following servers.
;
; NOTE: A port that is not reserved in this list can be used by
; any user. If you have TCP/IP hosts in your network that
; reserve ports in the range 1-1023 for privileged
; applications, you should reserve them here to prevent users
; from using them.
PORT

..........

..........
4000 TCP SERVA ; IMS Port for SERVA
4001 TCP SERVB ; IMS Port for SERVB

Figure 12. Definition of the TCP/IP Profile

;***
; *
; Name of Data Set: hlq.TCPIP.DATA *
; *
; This data, TCPIP.DATA, is used to specify configuration *
; information required by TCP/IP client programs. *
; *
;***
; TCPIPJOBNAME specifies the name of the started procedure which was
; used to start the TCP/IP address space. TCPIP is the default.
;
TCPIPJOBNAME TCPV3

..........

..........

..........

Figure 13. The TCPIPJOBNAME Parameter in the DATA Data Set

60 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 7. Using the CALL Instruction Application
Programming Interface (API)

This chapter describes the CALL Instruction API and includes the following topics:

v “Environmental Restrictions and Programming Requirements”

v “CALL Instruction Application Programming Interface (API)” on page 62

v “Understanding COBOL, Assembler, and PL/1 Call Formats” on page 62

v “Converting Parameter Descriptions” on page 63

v “Diagnosing Problems in Applications Using the CALL Instruction API” on page 64

v “Error Messages and Return Codes” on page 64

v “Code CALL Instructions” on page 64

v “Using Data Translation Programs for Socket Call Interface” on page 137

v “Call Interface PL/1 Sample Programs” on page 144

Environmental Restrictions and Programming Requirements
The following restrictions apply to both the Macro Socket API and the Callable
Socket API:

v SRB mode

These APIs may only be invoked in TCB mode (task mode).

v Cross-memory mode

These APIs may only be invoked in a non-cross-memory environment
(PASN=SASN=HASN).

v Functional Recovery Routine (FRR)

Do not invoke these APIs with an FRR set. This will cause system recovery
routines to be bypassed and severely damage the system.

v Locks

No locks should be held when issuing these calls.

v INITAPI/TERMAPI macros

The INITAPI/TERMAPI macros must be issued under the same task.

v Storage

Storage acquired for the purpose of containing data returned from a socket call
must be obtained in the same key as the application program status word (PSW)
at the time of the socket call.

v Nested socket API calls

You cannot issue nested API calls within the same task. That is, if a request
block (RB) issues a socket API call and is interrupted by an interrupt request
block (IRB) in an STIMER exit, any additional socket API calls that the IRB
attempts to issue are detected and flagged as an error.

v Addressability mode (Amode) considerations

The EZASMI macro API may be invoked while the caller is in either 31-bit or
24-bit Amode. However, if the application is running in 24-bit addressability mode
at the time of the call, all addresses of parameters passed by the application
must be addressable in 31-bit Amode. This implies that even if the addresses
being passed reside in storage below the 16 MB line (and therefore addressable
by 24-bit Amode programs) the high-order byte of these addresses needs to be
0.

v Use of UNIX® System Services

© Copyright IBM Corp. 1994, 2001 61

Address spaces using the EZASMI API should not use any UNIX System
Services facilities. Doing so can yield unpredictable results.

CALL Instruction Application Programming Interface (API)
This section describes the CALL instruction API for TCP/IP application programs
written in the COBOL, PL/I, or System/370 Assembler language. The format and
parameters are described for each socket call.

For more information about sockets, refer to the UNIX Programmer’s Reference
Manual.

Notes:

1. Unless your program is running in a CICS® environment, reentrant code and
multithread applications are not supported by this interface.

2. Only one copy of an interface can exist in a single address space.

3. For a PL/I program, include the following statement before your first call
instruction.

DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;

4. A C run-time library is required when you use the GETHOSTBYADDR or
GETHOSTBYNAME call.

5. The entry point for the CICS Sockets Extended module (EZASOKET) is within
the EZACICAL module. Therefore EZACICAL should be included explicitly in
your link-edit JCL. If not included, you could experience problems, such as the
CICS region waiting for the socket calls to complete.

Understanding COBOL, Assembler, and PL/1 Call Formats
This API is invoked by calling the EZASOKET program and performs the same
functions as the C language calls. The parameters look different because of the
differences in the programming languages.

COBOL Language Call Format

BB CALL ‘EZASOKET’ USING SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE. BC

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with blanks.
Set to the name of the call. SOC-FUNCTION is case specific. It must be in
uppercase.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

62 z/OS V1R2.0 CS: IP IMS Sockets Guide

Assembler Language Call Format
The following is the ‘EZASOKET’ call format for assembler language programs.

BB CALL EZASOKET,(SOC-FUNCTION, parm1, parm2, ... ERRNO RETCODE),VL BC

PL/1 Language Call Format

BB CALL EZASOKET (SOC-FUNCTION parm1, parm2, ... ERRNO RETCODE); BC

SOC-FUNCTION
A 16-byte character field, left-justified and padded on the right with blanks.
Set to the name of the call.

parmn A variable number of parameters depending on the type call.

ERRNO
If RETCODE is negative, there is an error number in ERRNO. This field is
used in most, but not all, of the calls. It corresponds to the value returned
by the tcperror() function in C.

RETCODE
A fullword binary variable containing a code returned by the EZASOKET
call. This value corresponds to the normal return value of a C function.

Converting Parameter Descriptions
The parameter descriptions in this chapter are written using the VS COBOL II PIC
language syntax and conventions, but you should use the syntax and conventions
that are appropriate for the language you want to use.

Figure 14 on page 64 shows examples of storage definition statements for COBOL,
PL/1, and assembler language programs.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 63

Diagnosing Problems in Applications Using the CALL Instruction API
TCP/IP provides a trace facility that can be helpful in diagnosing problems in
applications using the CALL instruction API. The trace is implemented using the
TCP/IP Component Trace (CTRACE) SOCKAPI trace option. The SOCKAPI trace
option allows all Call instruction socket API calls issued by an application to be
traced in the TCP/IP CTRACE. The SOCKAPI trace records include information
such as the type of socket call, input, and output parameters and return codes. This
trace can be helpful in isolating failing socket API calls and in determining the
nature of the error or the history of socket API calls that may be the cause of an
error. For more information on the SOCKAPI trace option, refer to z/OS
Communications Server: IP Diagnosis.

Error Messages and Return Codes
For information about error messages, see z/OS Communications Server: IP
Messages Volume 1 (EZA).

For information about error codes that are returned by TCP/IP, see “Appendix A.
Return Codes” on page 193.

Code CALL Instructions
This section contains the description, syntax, parameters, and other related
information for each call instruction included in this API.

ACCEPT
A server issues the ACCEPT call to accept a connection request from a client. The
call points to a socket that was previously created with a SOCKET call and marked
by a LISTEN call.

VS COBOL II PIC

PIC S9(4) BINARY HALFWORD BINARY VALUE
PIC S9(8) BINARY FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

COBOL PIC

PIC S9(4) COMP HALFWORD BINARY VALUE
PIC S9(8) COMP FULLWORD BINARY VALUE
PIC X(n) CHARACTER FIELD OF N BYTES

PL/1 DECLARE STATEMENT

DCL HALF FIXED BIN(15), HALFWORD BINARY VALUE
DCL FULL FIXED BIN(31), FULLWORD BINARY VALUE
DCL CHARACTER CHAR(n) CHARACTER FIELD OF n BYTES

ASSEMBLER DECLARATION

DS H HALFWORD BINARY VALUE
DS F FULLWORD BINARY VALUE
DS CLn CHARACTER FIELD OF n BYTES

Figure 14. Storage Definition Statement Examples

64 z/OS V1R2.0 CS: IP IMS Sockets Guide

The ACCEPT call is a blocking call. When issued, the ACCEPT call:

1. Accepts the first connection on a queue of pending connections.

2. Creates a new socket with the same properties as s, and returns its descriptor
in RETCODE. The original sockets remain available to the calling program to
accept more connection requests.

3. The address of the client is returned in NAME for use by subsequent server
calls.

Notes:

1. The blocking or nonblocking mode of a socket affects the operation of certain
commands. The default is blocking; nonblocking mode can be established by
use of the FCNTL and IOCTL calls. When a socket is in blocking mode, an I/O
call waits for the completion of certain events. For example, a READ call will
block until the buffer contains input data. When an I/O call is issued:

v If the socket is blocking, program processing is suspended until the event
completes.

v If the socket is nonblocking, program processing continues.

2. If the queue has no pending connection requests, ACCEPT blocks the socket
unless the socket is in nonblocking mode. The socket can be set to nonblocking
by calling FCNTL or IOCTL.

3. When multiple socket calls are issued, a SELECT call can be issued prior to the
ACCEPT to ensure that a connection request is pending. Using this technique
ensures that subsequent ACCEPT calls will not block.

4. TCP/IP does not provide a function for screening clients. As a result, it is up to
the application program to control which connection requests it accepts, but it
can close a connection immediately after discovering the identity of the client.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 15 on page 66 shows an example of ACCEPT call instructions.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 65

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'ACCEPT'. Left-justify the field and pad
it on the right with blanks.

S A halfword binary number specifying the descriptor of a socket that was
previously created with a SOCKET call. In a concurrent server, this is the
socket upon which the server listens.

Parameter Values Returned to the Application
NAME A socket address structure that contains the client’s socket address.

FAMILY
A halfword binary field specifying the addressing family. The call
returns the value 2 for AF_INET.

PORT A halfword binary field that is set to the client’s port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit internet address, in
network-byte-order, of the client’s host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required, but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
If the RETCODE value is positive, the RETCODE value is the new socket
number.

If the RETCODE value is negative, check the ERRNO field for an error
number.

BIND
In a typical server program, the BIND call follows a SOCKET call and completes the
process of creating a new socket.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'ACCEPT'.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 15. ACCEPT Call Instructions Example

66 z/OS V1R2.0 CS: IP IMS Sockets Guide

The BIND call can either specify the required port or let the system choose the port.
A listener program should always bind to the same well-known port, so that clients
know what socket address to use when attempting to connect.

In the AF_INET domain, the BIND call for a stream socket can specify the networks
from which it is willing to accept connection requests. The application can fully
specify the network interface by setting the ADDRESS field to the internet address
of a network interface. Alternatively, the application can use a wildcard to specify
that it wants to receive connection requests from any network interface. This is
done by setting the ADDRESS field to a fullword of zeros.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 16 shows an example of BIND call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing BIND. The field is left-justified and
padded to the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket to
be bound.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'BIND'.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 16. BIND Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 67

NAME Specifies the socket address structure for the socket that is to be bound.

FAMILY
A halfword binary field specifying the addressing family. The value
is always set to 2, indicating AF_INET.

PORT A halfword binary field that is set to the port number to which you
want the socket to be bound.

Note: If PORT is set to 0 when the call is issued, the system
assigns the port number for the socket. The application can
call the GETSOCKNAME macro after the BIND macro to
discover the assigned port number.

IP-ADDRESS
A fullword binary field that is set to the 32-bit internet address
(network byte order) of the socket to be bound.

RESERVED
Specifies an 8-byte character field that is required but not used.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

CLOSE
The CLOSE call performs the following functions:

v The CLOSE call shuts down a socket and frees all resources allocated to it. If
the socket refers to an open TCP connection, the connection is closed.

v The CLOSE call is also issued by a concurrent server after it gives a socket to a
child server program. After issuing the GIVESOCKET and receiving notification
that the client child has successfully issued a TAKESOCKET, the concurrent
server issues the close command to complete the passing of ownership. In
high-performance, transaction-based systems the timeout associated with the
CLOSE call can cause performance problems. In such systems you should
consider the use of a SHUTDOWN call before you issue the CLOSE call. See
“SHUTDOWN” on page 129 for more information.

Notes:

1. If a stream socket is closed while input or output data is queued, the TCP
connection is reset and data transmission may be incomplete. The
SETSOCKET call can be used to set a linger condition, in which TCP/IP will
continue to attempt to complete data transmission for a specified period of
time after the CLOSE call is issued. See SO-LINGER in the description of
“SETSOCKOPT” on page 125.

2. A concurrent server differs from an iterative server. An iterative server
provides services for one client at a time; a concurrent server receives
connection requests from multiple clients and creates child servers that
actually serve the clients. When a child server is created, the concurrent

68 z/OS V1R2.0 CS: IP IMS Sockets Guide

server obtains a new socket, passes the new socket to the child server, and
then dissociates itself from the connection. The CICS Listener is an example
of a concurrent server.

3. After an unsuccessful socket call, a close should be issued and a new socket
should be opened. An attempt to use the same socket with another call
results in a nonzero return code.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 17 shows an example of CLOSE call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte field containing CLOSE. Left-justify the field and pad it on the
right with blanks.

S A halfword binary field containing the descriptor of the socket to be closed.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'CLOSE'.
01 S PIC 9(4) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

CALL 'EZASOKET' USING SOC-FUNCTION S ERRNO RETCODE.

Figure 17. CLOSE Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 69

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

CONNECT
The CONNECT call is issued by a client to establish a connection between a local
socket and a remote socket.

Stream Sockets
For stream sockets, the CONNECT call is issued by a client to establish connection
with a server. The call performs two tasks:

v It completes the binding process for a stream socket if a BIND call has not been
previously issued.

v It attempts to make a connection to a remote socket. This connection is
necessary before data can be transferred.

UDP Sockets
For UDP sockets, a CONNECT call need not precede an I/O call, but if issued, it
allows you to send messages without specifying the destination.

The call sequence issued by the client and server for stream sockets is:

1. The server issues BIND and LISTEN to create a passive open socket.

2. The client issues CONNECT to request the connection.

3. The server accepts the connection on the passive open socket, creating a new
connected socket.

The blocking mode of the CONNECT call conditions its operation.

v If the socket is in blocking mode, the CONNECT call blocks the calling program
until the connection is established, or until an error is received.

v If the socket is in nonblocking mode, the return code indicates whether the
connection request was successful.

– A 0 RETCODE indicates that the connection was completed.

– A nonzero RETCODE with an ERRNO of 36 (EINPROGRESS) indicates that
the connection is not completed, but since the socket is nonblocking, the
CONNECT call returns normally.

The caller must test the completion of the connection setup by calling SELECT
and testing for the ability to write to the socket.

The completion cannot be checked by issuing a second CONNECT. For more
information, see “SELECT” on page 112.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

70 z/OS V1R2.0 CS: IP IMS Sockets Guide

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 18 shows an example of CONNECT call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte field containing CONNECT. Left-justify the field and pad it on the
right with blanks.

S A halfword binary number specifying the socket descriptor of the socket that
is to be used to establish a connection.

NAME A structure that contains the socket address of the target to which the local,
client socket is to be connected.

FAMILY
A halfword binary field specifying the addressing family. The value
must be 2 for AF_INET.

PORT A halfword binary field that is set to the server’s port number in
network byte order. For example, if the port number is 5000 in
decimal, it is stored as X'1388' in hex.

IP-ADDRESS
A fullword binary field that is set to the 32-bit internet address of the
server’s host machine in network byte order. For example, if the
internet address is 129.4.5.12 in dotted decimal notation, it would
be represented as ’8104050C’ in hex.

RESERVED
Specifies an 8-byte reserved field. This field is required, but is not
used.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'CONNECT'.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 18. CONNECT Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 71

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, this field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

FCNTL
The blocking mode of a socket can either be queried or set to nonblocking using
the FNDELAY flag described in the FCNTL call. You can query or set the FNDELAY
flag even though it is not defined in your program.

See “IOCTL” on page 95 for another way to control a socket’s blocking mode.

Values for command that are supported by the UNIX Systems Services fcntl
callable service will also be accepted. Refer to the OpenEdition MVS Programming:
Assembler Callable Services Reference publication for more information.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 19 on page 73 shows an example of FCNTL call instructions.

72 z/OS V1R2.0 CS: IP IMS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing FCNTL. The field is left-justified and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
that you want to unblock or query.

COMMAND
A fullword binary number with the following values:

Value Description
3 Query the blocking mode of the socket.
4 Set the mode to blocking or nonblocking for the socket.

REQARG
A fullword binary field containing a mask that TCP/IP uses to set the
FNDELAY flag.

v If COMMAND is set to 3 ('query') the REQARG field should be set to 0.

v If COMMAND is set to 4 ('set')

– Set REQARG to 4 to turn the FNDELAY flag on. This places the
socket in nonblocking mode.

– Set REQARG to 0 to turn the FNDELAY flag off. This places the
socket in blocking mode.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following.

v If COMMAND was set to 3 (query), a bit string is returned.

– If RETCODE contains X'00000004', the socket is nonblocking. (The
FNDELAY flag is on.)

– If RETCODE contains X'00000000', the socket is blocking. (The
FNDELAY flag is off.)

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'FCNTL'.
01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(8) BINARY.
01 REQARG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG

ERRNO RETCODE.

Figure 19. FCNTL Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 73

v If COMMAND was set to 4 (set), a successful call is indicated by 0 in this
field. In both cases, a RETCODE of −1 indicates an error (check the
ERRNO field for the error number).

GETCLIENTID
GETCLIENTID call returns the identifier by which the calling application is known to
the TCP/IP address space in the calling program. The CLIENT parameter is used in
the GIVESOCKET and TAKESOCKET calls. See “GIVESOCKET” on page 91 for a
discussion of the use of GIVESOCKET and TAKESOCKET calls.

Do not be confused by the terminology; when GETCLIENTID is called by a server,
the identifier of the caller (not necessarily the client) is returned.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 20 shows an example of GETCLIENTID call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'GETCLIENTID'. The field is left-justified
and padded to the right with blanks.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETCLIENTID'.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION CLIENT ERRNO RETCODE.

Figure 20. GETCLIENTID Call Instruction Example

74 z/OS V1R2.0 CS: IP IMS Sockets Guide

Parameter Values Returned to the Application
CLIENT

A client-ID structure that describes the application that issued the call.

DOMAIN
A fullword binary number specifying the caller’s domain. For TCP/IP
the value is set to 2 for AF_INET.

NAME An 8-byte character field set to the caller’s address space name.

TASK An 8-byte character field set to the task identifier of the caller.

RESERVED
Specifies 20-byte character reserved field. This field is required, but
not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

GETHOSTBYADDR
The GETHOSTBYADDR call returns the domain name and alias name of a host
whose internet address is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host internet addresses.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 21 on page 76 shows an example of GETHOSTBYADDR call instructions.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 75

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYADDR'. The field is
left-justified and padded on the right with blanks.

HOSTADDR
A fullword binary field set to the internet address (specified in network byte
order) of the host whose name is being sought. See “Appendix A. Return
Codes” on page 193 for information about ERRNO return codes.

Parameter Values Returned to the Application
HOSTENT

A fullword containing the address of the HOSTENT structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

GETHOSTBYADDR returns the HOSTENT structure shown in Figure 22 on
page 77.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYADDR'.
01 HOSTADDR PIC 9(8) BINARY.
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION HOSTADDR HOSTENT RETCODE.

Figure 21. GETHOSTBYADDR Call Instruction Example

76 z/OS V1R2.0 CS: IP IMS Sockets Guide

This structure contains:

v The address of the host name that is returned by the call. The name length is
variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

v The address of a list of addresses that point to the host internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/1 or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 142.

GETHOSTBYNAME
The GETHOSTBYNAME call returns the alias name and the internet address of a
host whose domain name is specified in the call. A given TCP/IP host can have
multiple alias names and multiple host internet addresses.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 22. HOSTENT Structure Returned by the GETHOSTBYADDR Call

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 77

TCP/IP tries to resolve the host name through a name server, if one is present. If a
name server is not present, the system searches the HOSTS.SITEINFO data set
until a matching host name is found or until an EOF marker is reached.

Notes:

1. HOSTS.LOCAL, HOSTS.ADDRINFO, and HOSTS.SITEINFO are described in
z/OS Communications Server: IP Configuration Reference.

2. The C run-time libraries are required when GETHOSTBYNAME is issued by
your program.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 23 shows an example of GETHOSTBYNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'GETHOSTBYNAME'. The field is
left-justified and padded on the right with blanks.

NAMELEN
A value set to the length of the host name.

NAME A character string, up to 24 characters, set to a host name. Any trailing

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTBYNAME'.
01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(24).
01 HOSTENT PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME

HOSTENT RETCODE.

Figure 23. GETHOSTBYNAME Call Instruction Example

78 z/OS V1R2.0 CS: IP IMS Sockets Guide

|

blanks will be removed from the specified name prior to trying to resolve it
to an IP address. This call returns the address of the HOSTENT structure
for this name.

Parameter Values Returned to the Application
HOSTENT

A fullword binary field that contains the address of the HOSTENT structure.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 An error occurred.

GETHOSTBYNAME returns the HOSTENT structure shown in Figure 24. This
structure contains:

v The address of the host name that is returned by the call. The name length is
variable and is ended by X'00'.

v The address of a list of addresses that point to the alias names returned by the
call. This list is ended by the pointer X'00000000'. Each alias name is a variable
length field ended by X'00'.

v The value returned in the FAMILY field is always 2 for AF_INET.

v The length of the host internet address returned in the HOSTADDR_LEN field is
always 4 for AF_INET.

v The address of a list of addresses that point to the host internet addresses
returned by the call. The list is ended by the pointer X'00000000'. If the call
cannot be resolved, the HOSTENT structure contains the ERRNO 10214.

Hostent

Hostname

Hostaddr_Len

Hostaddr_List

Address of

Address of INET Addr#1

Alias#1 X'00'

Name X'00'

INET Addr#2

Alias#2 X'00'

INET Addr#3

Alias#3 X'00'

Address of

List

List

Address of

Address of

Address of

Address of

Address of

Address of

X'00000004'

X'00000000'

X'00000000'

X'00000002'

Alias_List

Family

Figure 24. HOSTENT Structure Returned by the GETHOSTYBYNAME Call

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 79

|

|
|
|

|
|

The HOSTENT structure uses indirect addressing to return a variable number of
alias names and internet addresses. If you are coding in PL/1 or assembler
language, this structure can be processed in a relatively straight-forward manner. If
you are coding in COBOL, this structure may be difficult to interpret. You can use
the subroutine EZACIC08 to simplify interpretation of the information returned by
the GETHOSTBYADDR and GETHOSTBYNAME calls. For more information about
EZACIC08, see “EZACIC08” on page 142.

GETHOSTID
The GETHOSTID call returns the 32-bit internet address for the current host.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 25 shows an example of GETHOSTID call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'GETHOSTID'. The field is left-justified
and padded on the right with blanks.

RETCODE
Returns a fullword binary field containing the 32-bit internet address of the
host. There is no ERRNO parameter for this call.

GETHOSTNAME
The GETHOSTNAME call returns the domain name of the local host.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTID'.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION RETCODE.

Figure 25. GETHOSTID Call Instruction Example

80 z/OS V1R2.0 CS: IP IMS Sockets Guide

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 26 shows an example of GETHOSTNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing GETHOSTNAME. The field is
left-justified and padded on the right with blanks.

NAMELEN
A fullword binary field set to the length of the NAME field.

Parameter Values Returned to the Application
NAMELEN

A fullword binary field set to the length of the host name.

NAME Indicates the receiving field for the host name. TCP/IP Services allows a
maximum length of 24 characters. The internet standard is a maximum
name length of 255 characters. The actual length of the NAME field is
found in NAMELEN.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETHOSTNAME'.
01 NAMELEN PIC 9(8) BINARY.
01 NAME PIC X(24).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION NAMELEN NAME

ERRNO RETCODE.

Figure 26. GETHOSTNAME Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 81

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

GETIBMOPT
The GETIBMOPT call returns the number of TCP/IP images installed on a given
MVS system and their status, versions, and names.

Note: Images from pre-V3R2 releases of TCP/IP Services are excluded. The
GETIBMOPT call is not meaningful for pre-V3R2 releases. With this
information, the caller can dynamically choose the TCP/IP image with which
to connect by using the INITAPI call. The GETIBMOPT call is optional. If it is
not used, follow the standard method to determine the connecting TCP/IP
image:

v Connect to the TCP/IP specified by TCPIPJOBNAME in the active
TCPIP.DATA file.

v Locate TCPIP.DATA using the search order described in z/OS
Communications Server: IP Configuration Reference.

For detailed information about the standard method, refer to z/OS Communications
Server: IP Migration.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 27 on page 83 shows an example of GETIBMOPT call instructions.

82 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing GETIBMOPT. The field is
left-justified and padded on the right with blanks.

COMMAND A value or the address of a fullword binary number specifying the
command to be processed. The only valid value is 1.

Parameter Values Returned to the Application
BUF A 100-byte buffer into which each active TCP/IP image status, version, and

name are placed.

On successful return, these buffer entries contain the status, names, and versions
of up to eight active TCP/IP images. The following layout shows the BUF field upon
completion of the call.

The NUM_IMAGES field indicates how many entries of TCP_IMAGE are included in
the total BUF field. If the NUM_IMAGES returned is 0, there are no TCP/IP images
present.

The status field can have a combination of the following information:

Status Field Meaning

X'8xxx' Active

X'4xxx' Terminating

X'2xxx' Down

X'1xxx' Stopped or stopping

Note: In the above status fields, xxx is reserved for IBM use and can contain any
value.

When the status field is returned with a combination of Down and Stopped, TCP/IP
abended. Stopped, when returned alone, indicates that TCP/IP was stopped.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETIBMOPT'.
01 COMMAND PIC 9(8) BINARY VALUE IS 1.
01 BUF.

03 NUM-IMAGES PIC 9(8) COMP.
03 TCP-IMAGE OCCURS 8 TIMES.

05 TCP-IMAGE-STATUS PIC 9(4) BINARY.
05 TCP-IMAGE-VERSION PIC 9(4) BINARY.
05 TCP-IMAGE-NAME PIC X(8)

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE

CALL 'EZASOKET' USING SOC-FUNCTION COMMAND BUF ERRNO RETCODE.

Figure 27. GETIBMOPT Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 83

The version field is:

Version Field

TCP/IP V3R2 for MVS X'0302'

TCP/IP eNetwork CS V2R5 X'0304'

TCP/IP SecureWay® CS V2R8 X'0308'

TCP/IP OS/390® CS V2R10 X'0510'

TCP/IP z/OS CS V1R2 X'0612'

The name field is the PROC name, left-justified, and padded with blanks.

ERRNO
A fullword binary field. If RETCODE is negative, this contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field with the following values:

Value Description

−1 Call returned error. See ERRNO field.

0 Successful call.

GETPEERNAME
The GETPEERNAME call returns the name of the remote socket to which the local
socket is connected.

NUM_IMAGES

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

Status
(2 bytes)

Version
(2 bytes)

Name
(8 bytes)

(4 bytes)

Figure 28. Example of Name Field

84 z/OS V1R2.0 CS: IP IMS Sockets Guide

|

|||

||

||

||

||

||
|

|

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 29 shows an example of GETPEERNAME call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing GETPEERNAME. The field is
left-justified and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the local socket
connected to the remote peer whose address is required.

Parameter Values Returned to the Application
NAME A structure to contain the peer name. The structure that is returned is the

socket address structure for the remote socket that is connected to the local
socket specified in field S.

FAMILY
A halfword binary field containing the connection peer’s addressing
family. The call always returns the value 2, indicating AF_INET.

PORT A halfword binary field set to the connection peer’s port number.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETPEERNAME'.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 29. GETPEERNAME Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 85

IP-ADDRESS
A fullword binary field set to the 32-bit internet address of the
connection peer’s host machine.

RESERVED
Specifies an 8-byte reserved field. This field is required, but not
used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

GETSOCKNAME
The GETSOCKNAME call returns the address currently bound to a specified
socket. If the socket is not currently bound to an address, the call returns with the
FAMILY field set, and the rest of the structure set to 0.

Since a stream socket is not assigned a name until after a successful call to either
BIND, CONNECT, or ACCEPT, the GETSOCKNAME call can be used after an
implicit bind to discover which port was assigned to the socket.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 30 on page 87 shows an example of GETSOCKNAME call instructions.

86 z/OS V1R2.0 CS: IP IMS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing GETSOCKNAME. The field is
left-justified and padded on the right with blanks.

S A halfword binary number set to the descriptor of a local socket whose
address is required.

Parameter Values Returned to the Application
NAME Specifies the socket address structure returned by the call.

FAMILY
A halfword binary field containing the addressing family. The call
always returns the value 2, indicating AF_INET.

PORT A halfword binary field set to the port number bound to this socket.
If the socket is not bound, 0 is returned.

IP-ADDRESS
A fullword binary field set to the 32-bit internet address of the local
host machine.

RESERVED
Specifies 8 bytes of binary zeros. This field is required but not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

GETSOCKOPT
The GETSOCKOPT call queries the options that are set by the SETSOCKOPT call.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKNAME'.
01 S PIC 9(4) BINARY.
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S NAME ERRNO RETCODE.

Figure 30. GETSOCKNAME Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 87

Several options are associated with each socket. These options are described
below. You must specify the option to be queried when you issue the
GETSOCKOPT call.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 31 shows an example of GETSOCKOPT call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GETSOCKOPT'.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.
01 TCP-NODELAY-VAL PIC 9(10) COMP VALUE 2147483649.
01 TCP-NODELAY-REDEF REDEFINES TCP-NODELAY-VAL.

05 FILLER PIC 9(6) COMP.
05 TCP-NODELAY-BITSTREAM PIC 9(8) COMP.

01 OPTNAME PIC 9(8) COMP.
88 SO-REUSEADDR VALUE 4.
88 SO-KEEPALIVE VALUE 8.
88 SO-BROADCAST VALUE 32.
88 SO-LINGER VALUE 128.
88 SO-OOBINLINE VALUE 256.
88 SO-SNDBUF VALUE 4097.
88 SO-RCVBUF VALUE 4098.
88 SO-ERROR VALUE 4103.
88 SO-TYPE VALUE 4104.

01 OPTVAL PIC X(16) BINARY.
01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

Figure 31. GETSOCKOPT Call Instruction Example

88 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing GETSOCKOPT. The field is left-justified
and padded on the right with blanks.

S A halfword binary number specifying the socket descriptor for the socket
requiring options.

OPTNAME
Set OPTNAME to the required options before you issue GETSOCKOPT.
The options are as follows:

v The following may be specified for TCP level options.

Note: If not using the literal when specifing a TCP level option, turn on
the high order bit in the option value.

TCP_NODELAY
Returns the status of Nagle algorithm (RFC 896).

When optval is 0, Nagle algorithm is enabled and TCP
will wait to send small packets of data until the
acknowledgment for the previous data is received.

When optval is nonzero, Nagle algorithm is disabled and
TCP will send small packets of data even before the
acknowledgment for previous data sent is received.

v The following may be specified for socket level options.

SO-REUSEADDR
Returns the status of local address reuse. When
enabled, this option allows local addresses that are
already in use to be bound. Instead of checking at BIND
time (the normal algorithm) the system checks at
CONNECT time to ensure that the local address and port
do not have the same remote address and port. If the
association already exists, Error 48 (EADDRINUSE) is
returned when the CONNECT is issued.

SO-KEEPALIVE
Requests the status of the TCP keepalive mechanism for
a stream socket. When activated, the keepalive
mechanism periodically sends a packet on an otherwise
idle connection. If the remote TCP does not respond to
the packet or to retransmissions of the packet, the
connection is terminated with the error ETIMEDOUT.

SO-BROADCAST
Requests the status of the broadcast option, which is the
ability to send broadcast messages. This option has no
meaning for stream sockets.

SO-LINGER Requests the status of LINGER.

– When the LINGER option has been enabled, and data
transmission has not been completed, a CLOSE call
blocks the calling program until the data is transmitted
or until the connection has timed out.

– If LINGER is not enabled, a CLOSE call returns
without blocking the caller. TCP/IP attempts to send
the data. Although the data transfer is usually

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 89

|

|
|

|
|

|
|
|

|
|
|

|

successful, it cannot be guaranteed, because TCP/IP
only attempts to send the data for a specified amount
of time.

SO-OOBINLINE
Requests the status of how out-of-band data is to be
received. This option has meaning only for stream
sockets.

– When this option is enabled, out-of-band data is
placed in the normal data input queue as it is
received, making it available to RECV and
RECVFROM without having to specify the MSG-OOB
flag in those calls.

– When this option is disabled, out-of-band data is
placed in the priority data input queue as it is
received, making it available to RECV and
RECVFROM only when the MSG-OOB flag is set.

SO_SNDBUF Returns the size of the data portion of the TCP/IP send
buffer in OPTVAL. The size of the data portion of the
send buffer is protocol-specific, based on the following
value prior to any SETSOCKOPT call:

– The TCPSENDBufrsize keyword on the TCPCONFIG
statement in the PROFILE.TCPIP data set for a TCP
socket.

– The UDPSENDBufrsize keyword on the UDPCONFIG
statement in the PROFILE.TCPIP data set for a UDP
socket.

– The default of 65535 for a raw socket.

SO_RCVBUF Returns the size of the data portion of the TCP/IP
receive buffer in OPTVAL. The size of the data portion of
the receive buffer is protocol-specific, based on the
following value prior to any SETSOCKOPT call:

– The TCPRCVBufrsize keyword on the TCPCONFIG
statement in the PROFILE.TCPIP data set for a TCP
socket.

– The UDPRCVBufrsize keyword on the UDPCONFIG
statement in the PROFILE.TCPIP data set for a UDP
socket.

– The default of 65535 for a raw socket.

SO-ERROR Requests any pending error on the socket and clears the
error status. It can be used to check for asynchronous
errors on connected datagram sockets or for other
asynchronous errors (errors that are not returned
explicitly by one of the socket calls).

SO-TYPE Returns socket type: stream, datagram, or raw.

Parameter Values Returned to the Application
OPTVAL

v For all values of OPTNAME other than SO-LINGER, OPTVAL is a 32-bit
fullword, containing the status of the specified option.

– If the requested option is enabled, the fullword contains a positive
value; if the requested option is disabled, the fullword contains 0.

90 z/OS V1R2.0 CS: IP IMS Sockets Guide

– If OPTNAME is set to SO-ERROR, OPTVAL contains the most recent
ERRNO for the socket. This error variable is then cleared.

– If OPTNAME is set to SO-TYPE, OPTVAL returns X'1' for
SOCK-STREAM, or X'2' for SOCK-DGRAM, or X'3' for SOCK-RAW.

v If SO-LINGER is specified in OPTNAME, the following structure is
returned:

ONOFF PIC X(8)
LINGER PIC 9(8)

– A nonzero value returned in ONOFF indicates that the option is
enabled; a 0 value indicates that it is disabled.

– The LINGER value indicates the amount of time (in seconds) TCP/IP
will continue to attempt to send the data after the CLOSE call is
issued. To set the Linger time, see “SETSOCKOPT” on page 125.

OPTLEN
A fullword binary field containing the length of the data returned in OPTVAL.

v For all values of OPTNAME except SO-LINGER, OPTLEN will be set to
4 (one fullword).

v For OPTNAME of SO-LINGER, OPTVAL contains two fullwords, so
OPTLEN will be set to 8 (two fullwords).

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

GIVESOCKET
The GIVESOCKET call is used to pass a socket from one process to another.

UNIX-based platforms use a command called FORK to create a new child process
that has the same descriptors as the parent process. You can use this new child
process in the same way that you used the parent process.

TCP/IP normally uses GETCLIENTID, GIVESOCKET, and TAKESOCKET calls in
the following sequence:

1. A process issues a GETCLIENTID call to get the job name of its region and its
MVS subtask identifier. This information is used in a GIVESOCKET call.

2. The process issues a GIVESOCKET call to prepare a socket for use by a child
process.

3. The child process issues a TAKESOCKET call to get the socket. The socket
now belongs to the child process, and can be used by TCP/IP to communicate
with another process.

Note: The TAKESOCKET call returns a new socket descriptor in RETCODE.
The child process must use this new socket descriptor for all calls that
use this socket. The socket descriptor that was passed to the
TAKESOCKET call must not be used.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 91

4. After issuing the GIVESOCKET command, the parent process issues a SELECT
command that waits for the child to get the socket.

5. When the child gets the socket, the parent receives an exception condition that
releases the SELECT command.

6. The parent process closes the socket.

The original socket descriptor can now be reused by the parent.

Sockets that have been given, but not taken for a period of four days, will be closed
and will no longer be available for taking. If a select for the socket is outstanding, it
will be posted.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 32 shows an example of GIVESOCKET call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'GIVESOCKET'. The field is left-justified
and padded on the right with blanks.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'GIVESOCKET'.
01 S PIC 9(4) BINARY.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S CLIENT ERRNO RETCODE.

Figure 32. GIVESOCKET Call Instruction Example

92 z/OS V1R2.0 CS: IP IMS Sockets Guide

S A halfword binary number set to the socket descriptor of the socket to be
given.

CLIENT
A structure containing the identifier of the application to which the socket
should be given.

DOMAIN
A fullword binary number that must be set to 2, indicating AF_INET.

NAME Specifies an eight-character field, left-justified, padded to the right
with blanks, that can be set to the name of the MVS address space
that will contain the application that is going to take the socket.

v If the socket-taking application is in the same address space as
the socket-giving application (as in CICS), NAME can be
specified. The socket-giving application can determine its own
address space name by issuing the GETCLIENTID call.

v If the socket-taking application is in a different MVS address
space (as in IMS), this field should be set to blanks. When this is
done, any MVS address space that requests the socket can have
it.

TASK Specifies an eight-character field that can be set to blanks, or to the
identifier of the socket-taking MVS subtask. If this field is set to
blanks, any subtask in the address space specified in the NAME
field can take the socket.

v As used by IMS and CICS, the field should be set to blanks.

v If TASK identifier is non-blank, the socket-receiving task should
already be in execution when the GIVESOCKET is issued.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

INITAPI
The INITAPI call connects an application to the TCP/IP interface. Almost all sockets
programs that are written in COBOL, PL/I, or assembler language must issue the
INITAPI macro before they issue other sockets macros.

The exceptions to this rule are the following calls, which, when issued first, will
generate a default INITAPI call.
v GETCLIENTID
v GETHOSTID
v GETHOSTNAME
v GETIBMOPT
v SELECT

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 93

v SELECTEX
v SOCKET
v TAKESOCKET

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 33 shows an example of INITAPI call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing INITAPI. The field is left-justified and
padded on the right with blanks.

MAXSOC
A halfword binary field set to the maximum number of sockets this
application will ever have open at one time. The maximum number is 2000
and the minimum number is 50. This value is used to determine the amount
of memory that will be allocated for socket control blocks and buffers. If less
than 50 are requested, MAXSOC defaults to 50.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'INITAPI'.
01 MAXSOC PIC 9(4) BINARY.
01 IDENT.

02 TCPNAME PIC X(8).
02 ADSNAME PIC X(8).

01 SUBTASK PIC X(8).
01 MAXSNO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC IDENT SUBTASK
MAXSNO ERRNO RETCODE.

Figure 33. INITAPI Call Instruction Example

94 z/OS V1R2.0 CS: IP IMS Sockets Guide

IDENT A structure containing the identities of the TCP/IP address space and the
calling program’s address space. Specify IDENT on the INITAPI call from
an address space.

TCPNAME
An 8-byte character field that should be set to the MVS job name of
the TCP/IP address space with which you are connecting.

ADSNAME
An 8-byte character field set to the identity of the calling program’s
address space. For explicit-mode IMS server programs, use the
TIMSrvAddrSpc field passed in the TIM. If ADSNAME is not
specified, the system derives a value from the MVS control block
structure.

SUBTASK
Indicates an 8-byte field, containing a unique subtask identifier which is
used to distinguish between multiple subtasks within a single address
space. Use your own job name as part of your subtask name. This will
ensure that, if you issue more than one INITAPI command from the same
address space, each SUBTASK parameter will be unique.

Parameter Values Returned to the Application
MAXSNO

A fullword binary field that contains the highest socket number assigned to
this application. The lowest socket number is 0. If you have 50 sockets,
they are numbered from 0 to 49. If MAXSNO is not specified, the value for
MAXSNO is 49.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

IOCTL
The IOCTL call is used to control certain operating characteristics for a socket.

Before you issue an IOCTL macro, you must load a value representing the
characteristic that you want to control into the COMMAND field.

The variable length parameters REQARG and RETARG are arguments that are
passed to and returned from IOCTL. The length of REQARG and RETARG is
determined by the value that you specify in COMMAND. See Table 3 on page 98 for
information about REQARG and RETARG.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 95

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 34 shows an example of IOCTL call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing IOCTL. The field is left-justified and
padded to the right with blanks.

WORKING-STORAGE SECTION.
01 SOC-FUNCTION PIC X(16) VALUE 'IOCTL '.
01 S PIC 9(4) BINARY.
01 COMMAND PIC 9(4) BINARY.

01 IFREQ,
3 NAME PIC X(16).
3 FAMILY PIC 9(4) BINARY.
3 PORT PIC 9(4) BINARY.
3 ADDRESS PIC 9(8) BINARY.
3 RESERVED PIC X(8).

01 IFREQOUT,
3 NAME PIC X(16).
3 FAMILY PIC 9(4) BINARY.
3 PORT PIC 9(4) BINARY.
3 ADDRESS PIC 9(8) BINARY.
3 RESERVED PIC X(8).

01 GRP_IOCTL_TABLE(100)
02 IOCTL_ENTRY,
3 NAME PIC X(16).
3 FAMILY PIC 9(4) BINARY.
3 PORT PIC 9(4) BINARY.
3 ADDRESS PIC 9(8) BINARY.
3 NULLS PIC X(8).

01 REQARG POINTER ;
01 RETARG POINTER ;
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND REQARG

RETARG ERRNO RETCODE.

Figure 34. IOCTL Call Instruction Example

96 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

S A halfword binary number set to the descriptor of the socket to be
controlled.

COMMAND
To control an operating characteristic, set this field to one of the following
symbolic names. A value in a bit mask is associated with each symbolic
name. By specifying one of these names, you are turning on a bit in a mask
which communicates the requested operating characteristic to TCP/IP.

FIONBIO
Sets or clears blocking status.

FIONREAD
Returns the number of immediately readable bytes for the socket.

SIOCADDRT
Adds a specified routing table entry.

SIOCATMARK
Determines whether the current location in the data input is pointing
to out-of-band data.

SIOCDELRT
Deletes a specified routing table entry.

SIOCGIFADDR
Requests the network interface address for a given interface name.
See the NAME field in Figure 35 for the address format.

SIOCGIFBRDADDR
Requests the network interface broadcast address for a given
interface name. See the NAME field in Figure 35 for the address
format.

SIOCGIFCONF
Requests the network interface configuration. The configuration is a
variable number of 32-byte structures formatted as shown in
Figure 35.

v When IOCTL is issued, REQARG must contain the length of the
array to be returned. To determine the length of REQARG,
multiply the structure length (array element) by the number of
interfaces requested. The maximum number of array elements
that TCP/IP can return is 100.

v When IOCTL is issued, RETARG must be set to the beginning of
the storage area that you have defined in your program for the
array to be returned.

SIOCGIFDSTADDR
Requests the network interface destination address for a given
interface name. (See IFREQ NAME field, Figure 35 for format.)

SIOCGIFFLAGS
Requests the network interface flags.

03 NAME PIC X(16).
03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

Figure 35. Interface Request Structure (IFREQ) for the IOCTL Call

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 97

SIOCGIFMETRIC
Requests the network interface routing metric.

SIOCGIFNETMASK
Requests the network interface network mask.

SIOCSIFMETRIC
Sets the network interface routing metric.

SIOCSIFDSTADDR
Sets the network interface destination address.

SIOCSIFFLAGS
Sets the network interface flags.

REQARG and RETARG
REQARG is used to pass arguments to IOCTL, and RETARG receives
arguments from IOCTL. The REQARG and RETARG parameters are
described in Table 3.

Table 3. IOCTL Call Arguments

COMMAND/CODE SIZE REQARG SIZE RETARG

FIONBIO
X'8004A77E'

4 Set socket mode to:
X'00'=blocking,
X'01'=nonblocking.

0 Not used

FIONREAD
X'4004A77F'

0 Not used. 4 Number of characters
available for read.

SIOCADDRT
X'8030A70A'

48 For IBM use only. 0 For IBM use only.

SIOCATMARK
X'4004A707'

0 Not used. 4 X'00'= at OOB data
X'01'= not at OOB data.

SIOCDELRT
X'8030A70B'

48 For IBM use only. 0 For IBM use only.

SIOCGIFADDR
X'C020A70D'

32 First 16 bytes -
interface name.

Last 16 bytes -
not used.

32 Network interface
address, see
Figure 35 on page 97
for format.

SIOCGIFBRDADDR
X'C020A712'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 Network interface
address, see
Figure 35 on page 97
for format.

SIOCGIFCONF
X'C008A714'

8 Size of RETARG. See note.

Note: When you call IOCTL with the SIOCGIFCONF command set, REQARG should
contain the length in bytes of RETARG. Each interface is assigned a 32-byte array element
and REQARG should be set to the number of interfaces times 32. TCP/IP Services can
return up to 100 array elements.

SIOCGIFDSTADDR
X'C020A70F'

32 First 16 bytes -
interface name.
Last 16 bytes -
not used.

32 Destination interface
address, see
Figure 35 on page 97
for format.

SIOCGIFFLAGS
X'C020A711'

32 For IBM use only. 32 For IBM use only.

SIOCGIFMETRIC
X'C020A717'

32 For IBM use only. 32 For IBM use only.

98 z/OS V1R2.0 CS: IP IMS Sockets Guide

Table 3. IOCTL Call Arguments (continued)

COMMAND/CODE SIZE REQARG SIZE RETARG

SIOCGIFNETMASK
X'C020A715'

32 For IBM use only. 32 For IBM use only.

SIOCSIFMETRIC
X'8020A718'

32 For IBM use only. 0 For IBM use only.

SIOCSIFDSTADDR
X'8020A70E'

32 For IBM use only. 0 For IBM use only.

SIOCSIFFLAGS
X'8020A710'

32 For IBM use only. 0 For IBM use only.

Parameter Values Returned to the Application
RETARG

Returns an array whose size is based on the value in COMMAND. See
Table 3 for information about REQARG and RETARG.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

The COMMAND SIOGIFCONF returns a variable number of network interface
configurations. Figure 36 contains an example of a COBOL II routine that can be
used to work with such a structure.

Note: This call can only be programmed in languages that support address
pointers. Figure 36 shows a COBOL II example for SIOCGIFCONF.

LISTEN
The LISTEN call:

v Completes the bind, if BIND has not already been called for the socket.

WORKING STORAGE SECTION.
77 REQARG PIC 9(8) COMP.
77 COUNT PIC 9(8) COMP VALUE max number of interfaces.

LINKAGE SECTION.
01 RETARG.

05 IOCTL-TABLE OCCURS 1 TO max TIMES DEPENDING ON COUNT.
10 NAME PIC X(16).
10 FAMILY PIC 9(4) BINARY.
10 PORT PIC 9(4) BINARY.
10 ADDR PIC 9(8) BINARY.
10 NULLS PIC X(8).

PROCEDURE DIVISION.
MULTIPLY COUNT BY 32 GIVING REQARQ.
CALL 'EZASOKET' USING SOC-FUNCTION S COMMAND

REQARG RETARG ERRNO RETCODE.

Figure 36. COBOL II Example for SIOCGIFCONF

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 99

v Creates a connection-request queue of a specified length for incoming
connection requests.

Note: The LISTEN call is not supported for datagram sockets or raw sockets.

The LISTEN call is typically used by a server to receive connection requests from
clients. When a connection request is received, a new socket is created by a
subsequent ACCEPT call, and the original socket continues to listen for additional
connection requests. The LISTEN call converts an active socket to a passive socket
and conditions it to accept connection requests from clients. Once a socket
becomes passive it cannot initiate connection requests.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 37 shows an example of LISTEN call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing LISTEN. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor.

BACKLOG
A fullword binary number set to the number of communication requests to
be queued.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'LISTEN'.
01 S PIC 9(4) BINARY.
01 BACKLOG PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S BACKLOG ERRNO RETCODE.

Figure 37. LISTEN Call Instruction Example

100 z/OS V1R2.0 CS: IP IMS Sockets Guide

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

READ
The READ call reads the data on socket s. This is the conventional TCP/IP read
data operation. If a datagram packet is too long to fit in the supplied buffer,
datagram sockets discard extra bytes.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
this call in a loop that repeats until all data has been received.

Note: See “EZACIC05” on page 139 for a subroutine that will translate ASCII input
data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 38 on page 102 shows an example of READ call instructions.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 101

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing READ. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket that is
going to read the data.

NBYTE
A fullword binary number set to the size of BUF. READ does not return
more than the number of bytes of data in NBYTE even if more data is
available.

Parameter Values Returned to the Application
BUF On input, a buffer to be filled by completion of the call. The length of BUF

must be at least as long as the value of NBYTE.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

−1 Check ERRNO for an error code.

READV
The READV function reads data on a socket and stores it in a set of buffers. If a
datagram packet is too long to fit in the supplied buffers, datagram sockets discard
extra bytes.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'READ'.
01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

Figure 38. READ Call Instruction Example

102 z/OS V1R2.0 CS: IP IMS Sockets Guide

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 39 shows an example of READV call instructions.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing READV. The field is left-justified and
padded to the right with blanks.

S A value or the address of a halfword binary number specifying the
descriptor of the socket into which the data is to be read.

IOV An array of tripleword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:

Fullword 1
Pointer to the address of a data buffer, which is filled in on
completion of the call

Fullword 2
Reserved

Fullword 3
The length of the data buffer referenced in fullword one

IOVCNT
A fullword binary field specifying the number of data buffers provided for this
call.

WORKING-STORAGE SECTION.
01 SOKET-FUNCTION PIC X(16) VALUE 'READV '.
01 S PIC 9(4) BINARY.
01 IOVCNT PIC 9(4) BINARY.

01 IOV.
03 BUFFER-ENTRY OCCURS N TIMES.

05 BUFFER_ADDR POINTER.
05 RESERVED PIC X(4).
05 BUFFER_LENGTH PIC 9(4).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

Figure 39. READV Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 103

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

0 A 0 return code indicates that the connection is closed and no data
is available.

>0 A positive value indicates the number of bytes copied into the
buffer.

−1 Check ERRNO for an error code.

RECV
The RECV call, like READ, receives data on a socket with descriptor S. RECV
applies only to connected sockets. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For additional control of the incoming data, RECV can:
v Peek at the incoming message without having it removed from the buffer
v Read out-of-band data

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECV in a loop that repeats until all data has been received.

If data is not available for the socket, and the socket is in blocking mode, RECV
blocks the caller until data arrives. If data is not available and the socket is in
nonblocking mode, RECV returns a −1 and sets ERRNO to 35 (EWOULDBLOCK).
See “FCNTL” on page 72 or “IOCTL” on page 95 for a description of how to set
nonblocking mode.

For raw sockets, RECV adds a 20-byte header.

Note: See “EZACIC05” on page 139 for a subroutine that will translate ASCII input
data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

104 z/OS V1R2.0 CS: IP IMS Sockets Guide

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 40 shows an example of RECV call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing RECV. The field is left-justified and
padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECV call will
read the same data.

NBYTE
A value or the address of a fullword binary number set to the size of BUF.
RECV does not receive more than the number of bytes of data in NBYTE
even if more data is available.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'RECV'.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 PEEK VALUE IS 2.

01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE BUF

ERRNO RETCODE.

Figure 40. RECV Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 105

Parameter Values Returned to the Application
BUF The input buffer to receive the data.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 The socket is closed.
>0 A positive return code indicates the number of bytes copied into the

buffer.
−1 Check ERRNO for an error code.

RECVFROM
The RECVFROM call receives data on a socket with descriptor S and stores it in a
buffer. The RECVFROM call applies to both connected and unconnected sockets.
The socket address is returned in the NAME structure. If a datagram packet is too
long to fit in the supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, recvfrom() returns the source address associated with each
incoming datagram. For connection-oriented protocols like TCP, getpeername()
returns the address associated with the other end of the connection.

If NAME is nonzero, the call returns the address of the sender. The NBYTE
parameter should be set to the size of the buffer.

On return, NBYTE contains the number of data bytes received.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if programs A and B are connected with a stream
socket and program A sends 1000 bytes, each call to this function can return any
number of bytes, up to the entire 1000 bytes. The number of bytes returned will be
contained in RETCODE. Therefore, programs using stream sockets should place
RECVFROM in a loop that repeats until all data has been received.

For raw sockets, RECVFROM adds a 20-byte header.

If data is not available for the socket, and the socket is in blocking mode,
RECVFROM blocks the caller until data arrives. If data is not available and the
socket is in nonblocking mode, RECVFROM returns a −1 and sets ERRNO to 35
(EWOULDBLOCK). See “FCNTL” on page 72 or “IOCTL” on page 95 for a
description of how to set nonblocking mode.

Note: See “EZACIC05” on page 139 for a subroutine that will translate ASCII input
data to EBCDIC.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

106 z/OS V1R2.0 CS: IP IMS Sockets Guide

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 41 shows an example of RECVFROM call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing RECVFROM. The field is left-justified
and padded to the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to
receive the data.

FLAGS
A fullword binary field containing flag values as follows:

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVFROM'.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 PEEK VALUE IS 2.

01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 NAME.

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS

NBYTE BUF NAME ERRNO RETCODE.

Figure 41. RECVFROM Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 107

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVFROM
call will read the same data.

NBYTE
A fullword binary number specifying the length of the input buffer.

Parameter Values Returned to the Application
BUF Defines an input buffer to receive the input data.

NAME A structure containing the address of the socket that sent the data. The
structure is:

FAMILY
A halfword binary number specifying the addressing family. The
value is always 2, indicating AF_INET.

PORT A halfword binary number specifying the port number of the sending
socket.

IP-ADDRESS
A fullword binary number specifying the 32-bit internet address of
the sending socket.

RESERVED
An 8-byte reserved field. This field is required, but is not used.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 The socket is closed.
>0 A positive return code indicates the number of bytes of data

transferred by the read call.
−1 Check ERRNO for an error code.

RECVMSG
The RECVMSG call receives messages on a socket with descriptor S and stores
them in an array of message headers. If a datagram packet is too long to fit in the
supplied buffers, datagram sockets discard extra bytes.

For datagram protocols, recvmsg() returns the source address associated with each
incoming datagram. For connection-oriented protocols like TCP, getpeername()
returns the address associated with the other end of the connection.

108 z/OS V1R2.0 CS: IP IMS Sockets Guide

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 42 on page 110 shows an example of RECVMSG call instructions.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 109

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'RECVMSG'.
01 S PIC 9(4) BINARY.
01 MSG-HDR.

03 MSG-NAME USAGE IS POINTER.
03 MSG-NAME-LEN USAGE IS POINTER.
03 IOV USAGE IS POINTER.
03 IOVCNT USAGE IS POINTER.
03 MSG-ACCRIGHTS USAGE IS POINTER.
03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 PEEK VALUE IS 2.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

LINKAGE SECTION.

01 RECVMSG-IOVECTOR.
03 IOV1A USAGE IS POINTER.

05 IOV1AL PIC 9(8) COMP.
05 IOV1L PIC 9(8) COMP.

03 IOV2A USAGE IS POINTER.
05 IOV2AL PIC 9(8) COMP.
05 IOV2L PIC 9(8) COMP.

03 IOV3A USAGE IS POINTER.
05 IOV3AL PIC 9(8) COMP.
05 IOV3L PIC 9(8) COMP.

01 RECVMSG-BUFFER1 PIC X(16).
01 RECVMSG-BUFFER2 PIC X(16).
01 RECVMSG-BUFFER3 PIC X(16).
01 RECVMSG-BUFNO PIC 9(8) COMP.

PROCEDURE

SET MSG-NAME TO NULLS.
SET MSG-NAME-LEN TO NULLS.
SET IOV TO ADDRESS OF RECVMSG-IOVECTOR.
MOVE 3 TO RECVMSG-BUFNO.
SET MSG-IOVCNT TO ADDRESS OF RECVMSG-BUFNO.
SET IOV1A TO ADDRESS OF RECVMSG-BUFFER1.
MOVE 0 TO MSG-IOV1AL.
MOVE LENGTH OF RECVMSG-BUFFER1 TO MSG-IOV1L.
SET IOV2A TO ADDRESS OF RECVMSG-BUFFER2.
MOVE 0 TO IOV2AL.
MOVE LENGTH OF RECVMSG-BUFFER2 TO IOV2L.
SET IOV3A TO ADDRESS OF RECVMSG-BUFFER3.
MOVE 0 TO IOV3AL.
MOVE LENGTH OF RECVMSG-BUFFER3 TO IOV3L.
SET MSG-ACCRIGHTS TO NULLS.
SET MSG-ACCRIGHTS-LEN TO NULLS.
MOVE X'00000000' TO FLAGS.
MOVE SPACES TO RECVMSG-BUFFER1.
MOVE SPACES TO RECVMSG-BUFFER2.
MOVE SPACES TO RECVMSG-BUFFER3.

CALL 'EZASOKET' USING SOC-FUNCTION S MSGHDR FLAGS ERRNO RETCODE.

Figure 42. RECVMSG Call Instruction Example

110 z/OS V1R2.0 CS: IP IMS Sockets Guide

Parameter Values Set by the Application
S A value or the address of a halfword binary number specifying the socket

descriptor.

MSG On input, a pointer to a message header into which the message is
received upon completion of the call.

Field Description

NAME On input, a pointer to a buffer where the sender address is stored
upon completion of the call.

NAME-LEN
On input, a pointer to the size of the address buffer that is filled in
on completion of the call.

IOV On input, a pointer to an array of tripleword structures with the
number of structures equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1
A pointer to the address of a data buffer.

Fullword 2
Reserved.

Fullword 3
A pointer to the length of the data buffer referenced in
fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage section, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number
of data buffers provided for this call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRLEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG 0 Read data.

OOB 1 Receive out-of-band data (stream sockets
only). Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

PEEK 2 Peek at the data, but do not destroy data. If
the peek flag is set, the next RECVMSG call
will read the same data.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 111

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field with the following values:

Value Description

<0 Call returned error. See ERRNO field.

0 Connection partner has closed connection.

>0 Number of bytes read.

SELECT
In a process where multiple I/O operations can occur it is necessary for the
program to be able to wait on one or several of the operations to complete.

For example, consider a program that issues a READ to multiple sockets whose
blocking mode is set. Because the socket would block on a READ call, only one
socket could be read at a time. Setting the sockets nonblocking would solve this
problem, but would require polling each socket repeatedly until data became
available. The SELECT call allows you to test several sockets and to execute a
subsequent I/O call only when one of the tested sockets is ready, thereby ensuring
that the I/O call will not block.

To use the SELECT call as a timer in your program, do one of the following:
v Set the read, write, and except arrays to zeros.
v Specify MAXSOC <= 0.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Defining Which Sockets to Test
The SELECT call monitors for read operations, write operations, and exception
operations:

v When a socket is ready to read, one of the following has occurred:

– A buffer for the specified sockets contains input data. If input data is available
for a given socket, a read operation on that socket will not block.

112 z/OS V1R2.0 CS: IP IMS Sockets Guide

– A connection has been requested on that socket.

v When a socket is ready to write, TCP/IP can accommodate additional output
data. If TCP/IP can accept additional output for a given socket, a write operation
on that socket will not block.

v When an exception condition has occurred on a specified socket it is an
indication that a TAKESOCKET has occurred for that socket.

Each socket descriptor is represented by a bit in a bit string. The bit strings are
contained in 32-bit fullwords, numbered from right to left. The rightmost bit
represents socket descriptor 0, the leftmost bit represents socket descriptor 31, and
so on. If your process uses 32 or fewer sockets, the bit string is 1 fullword. If your
process uses 33 sockets, the bit string is 2 fullwords. You define the sockets that
you want to test by turning on bits in the string.

Note: To simplify string processing in COBOL, you can use the program EZACIC06
to convert each bit in the string to a character. For more information, see
“EZACIC06” on page 140.

Read Operations
Read operations include ACCEPT, READ, READV, RECV, RECVFROM, or
RECVMSG calls. A socket is ready to be read when data has been received for it or
when a connection request has occurred.

To test whether any of several sockets is ready for reading, set the appropriate bits
in RSNDMSK to one before issuing the SELECT call. When the SELECT call
returns, the corresponding bits in the RRETMSK indicate sockets are ready for
reading.

Write Operations
A socket is selected for writing (ready to be written) when:

v TCP/IP can accept additional outgoing data.

v The socket is marked nonblocking and a previous CONNECT did not complete
immediately. In this case, CONNECT returned an ERRNO with a value of 36
(EINPROGRESS). This socket will be selected for write when the CONNECT
completes.

A call to WRITE, SEND, or SENDTO blocks when the amount of data to be sent
exceeds the amount of data TCP/IP can accept. To avoid this, you can precede the
write operation with a SELECT call to ensure that the socket is ready for writing.
Once a socket is selected for WRITE, the program can determine the amount of
TCP/IP buffer space available by issuing the GETSOCKOPT call with the
SO-SNDBUF option.

To test whether any of several sockets is ready for writing, set the WSNDMSK bits
representing those sockets to 1 before issuing the SELECT call. When the SELECT
call returns, the corresponding bits in the WRETMSK indicate sockets are ready for
writing.

Exception Operations
For each socket to be tested, the SELECT call can check for an existing exception
condition. Two exception conditions are supported:

v The calling program (concurrent server) has issued a GIVESOCKET command
and the target child server has successfully issued the TAKESOCKET call. When
this condition is selected, the calling program (concurrent server) should issue
CLOSE to dissociate itself from the socket.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 113

v A socket has received out-of-band data. On this condition, a READ will return the
out-of-band data ahead of program data.

To test whether any of several sockets have an exception condition, set the
ESNDMSK bits representing those sockets to 1. When the SELECT call returns, the
corresponding bits in the ERETMSK indicate sockets with exception conditions.

MAXSOC Parameter
The SELECT call must test each bit in each string before returning results. For
efficiency, the MAXSOC parameter can be used to specify the largest socket
descriptor number that needs to be tested for any event type. The SELECT call
tests only bits in the range 0 through the MAXSOC value.

TIMEOUT Parameter
If the time specified in the TIMEOUT parameter elapses before any event is
detected, the SELECT call returns, and the RETCODE is set to 0.

Figure 43 shows an example of SELECT call instructions.

Bit masks are 32-bit fullwords with one bit for each socket. Up to 32 sockets fit into
one 32-bit mask [PIC X(4)]. If you have 33 sockets, you must allocate two 32-bit
masks [PIC X(8)].

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-justified and
padded on the right with blanks.

MAXSOC
A fullword binary field set to the largest socket descriptor number that is to
be checked plus 1. (Remember to start counting at 0).

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECT'.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MICROSEC PIC 9(8) BINARY.

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))*4

Figure 43. SELECT Call Instruction Example

114 z/OS V1R2.0 CS: IP IMS Sockets Guide

TIMEOUT
If TIMEOUT is a positive value, it specifies the maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, specify the TIMEOUT value to be 0.

TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECT to time out after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
A bit string sent to request read event status.

v For each socket to be checked for pending read events, the
corresponding bit in the string should be set to 1.

v For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT will not check for read
events.

WSNDMSK
A bit string sent to request write event status.

v For each socket to be checked for pending write events, the
corresponding bit in the string should be set to set.

v For sockets to be ignored, the value of the corresponding bit should be
set to 0.

If this parameter is set to all zeros, the SELECT will not check for write
events.

ESNDMSK
A bit string sent to request exception event status.

v For each socket to be checked for pending exception events, the
corresponding bit in the string should be set to set.

v For each socket to be ignored, the corresponding bit should be set to 0.

If this parameter is set to all zeros, the SELECT will not check for exception
events.

Parameter Values Returned to the Application
RRETMSK

A bit string returned with the status of read events. The length of the string
should be equal to the maximum number of sockets to be checked. For
each socket that is ready to read, the corresponding bit in the string will be
set to 1; bits that represent sockets that are not ready to read will be set to
0.

WRETMSK
A bit string returned with the status of write events. The length of the string
should be equal to the maximum number of sockets to be checked. For

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 115

each socket that is ready to write, the corresponding bit in the string will be
set to 1; bits that represent sockets that are not ready to be written will be
set to 0.

ERETMSK
A bit string returned with the status of exception events. The length of the
string should be equal to the maximum number of sockets to be checked.
For each socket that has an exception status, the corresponding bit will be
set to 1; bits that represent sockets that do not have exception status will
be set to 0.

ERRNO
A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

>0 Indicates the sum of all ready sockets in the three masks.

0 Indicates that the SELECT time limit has expired.

−1 Check ERRNO for an error code.

SELECTEX
The SELECTEX call monitors a set of sockets, a time value, and an ECB. It
completes when either one of the sockets has activity, the time value expires, or
one of the ECBs is posted.

To use the SELECTEX call as a timer in your program, do either of the following:
v Set the read, write, and except arrays to zeros.
v Specify MAXSOC <= 0.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 44 on page 117 shows an example of SELECTEX call instructions.

116 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing SELECT. The field is left-justified and
padded on the right with blanks.

MAXSOC
A fullword binary field specifying the largest socket descriptor number being
checked.

TIMEOUT
If TIMEOUT is a positive value, it specifies a maximum interval to wait for
the selection to complete. If TIMEOUT-SECONDS is a negative value, the
SELECT call blocks until a socket becomes ready. To poll the sockets and
return immediately, set TIMEOUT to be zeros.

TIMEOUT is specified in the two-word TIMEOUT as follows:

v TIMEOUT-SECONDS, word one of the TIMEOUT field, is the seconds
component of the timeout value.

v TIMEOUT-MICROSEC, word two of the TIMEOUT field, is the
microseconds component of the timeout value (0—999999).

For example, if you want SELECTEX to time out after 3.5 seconds, set
TIMEOUT-SECONDS to 3 and TIMEOUT-MICROSEC to 500000.

RSNDMSK
The bit-mask array to control checking for read interrupts. If this parameter
is not specified or the specified bit-mask is zeros, the SELECT will not
check for read interrupts. The length of this bit-mask array is dependent on
the value in MAXSOC.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SELECTEX'.
01 MAXSOC PIC 9(8) BINARY.
01 TIMEOUT.

03 TIMEOUT-SECONDS PIC 9(8) BINARY.
03 TIMEOUT-MINUTES PIC 9(8) BINARY.

01 RSNDMSK PIC X(*).
01 WSNDMSK PIC X(*).
01 ESNDMSK PIC X(*).
01 RRETMSK PIC X(*).
01 WRETMSK PIC X(*).
01 ERETMSK PIC X(*).
01 SELECB PIC X(4).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

where * is the size of the select mask

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION MAXSOC TIMEOUT

RSNDMSK WSNDMSK ESNDMSK
RRETMSK WRETMSK ERETMSK
SELECB ERRNO RETCODE.

* The bit mask lengths can be determined from the expression:
((maximum socket number +32)/32 (drop the remainder))*4

Figure 44. SELECTEX Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 117

WSNDMSK
The bit-mask array to control checking for write interrupts. If this parameter
is not specified or the specified bit-mask is zeros, the SELECT will not
check for write interrupts. The length of this bit-mask array is dependent on
the value in MAXSOC.

ESNDMSK
The bit-mask array to control checking for exception interrupts. If this
parameter is not specified or the specified bit-mask is zeros, the SELECT
will not check for exception interrupts. The length of this bit-mask array is
dependent on the value in MAXSOC.

SELECB
An ECB which, if posted, causes completion of the SELECTEX.

Parameter Values Returned to the Application
ERRNO

A fullword binary field; if RETCODE is negative, this contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field

Value Meaning

>0 The number of ready sockets.

0 Either the SELECTEX time limit has expired (ECB value will be 0)
or one of the caller’s ECBs has been posted (ECB value will be
nonzero and the caller’s descriptor sets will be set to 0). The caller
must initialize the ECB values to 0 before issuing the SELECTEX
macro.

-1 Check ERRNO for an error code.

RRETMSK
The bit-mask array returned by the SELECT if RSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

WRETMSK
The bit-mask array returned by the SELECT if WSNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

ERETMSK
The bit-mask array returned by the SELECT if ESNDMSK is specified. The
length of this bit-mask array is dependent on the value in MAXSOC.

SEND
The SEND call sends data on a specified connected socket.

The FLAGS field allows you to:

v Send out-of-band data, such as interrupts, aborts, and data marked urgent. Only
stream sockets created in the AF_INET address family support out-of-band data.

v Suppress use of local routing tables. This implies that the caller takes control of
routing and writing network software.

For datagram sockets, SEND transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

118 z/OS V1R2.0 CS: IP IMS Sockets Guide

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes, with
the number of bytes sent returned in RETCODE. Therefore, programs using stream
sockets should place this call in a loop, reissuing the call until all data has been
sent.

Note: See “EZACIC04” on page 138 for a subroutine that will translate EBCDIC
input data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 45 shows an example of SEND call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing SEND. The field is left-justified and
padded on the right with blanks.

S A halfword binary number specifying the socket descriptor of the socket that
is sending data.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SEND'.
01 S PIC 9(4) BINARY.
01 FLAGS PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 DONT-ROUTE VALUE IS 4.

01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE

BUF ERRNO RETCODE.

Figure 45. SEND Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 119

FLAGS
A fullword binary field with values as follows:

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes of data to be
transferred.

BUF The buffer containing the data to be transmitted. BUF should be the size
specified in NBYTE.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

−1 Check ERRNO for an error code.

SENDMSG
The SENDMSG call sends messages on a socket with descriptor S passed in an
array of messages.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

120 z/OS V1R2.0 CS: IP IMS Sockets Guide

Figure 46 shows an example of SENDMSG call instructions.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDMSG'.
01 S PIC 9(4) BINARY.
01 MSGHDR.

03 MSG-NAME USAGE IS POINTER.
03 MSG-NAME-LEN USAGE IS POINTER.
03 IOV USAGE IS POINTER.
03 IOVCNT USAGE IS POINTER.
03 MSG-ACCRIGHTS USAGE IS POINTER.
03 MSG-ACCRIGHTS-LEN USAGE IS POINTER.

01 FLAGS PIC 9(8) BINARY.
88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 DONTROUTE VALUE IS 4.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

LINKAGE SECTION.

01 SENDMSG-IOVECTOR.
03 IOV1A USAGE IS POINTER.

05 IOV1AL PIC 9(8) COMP.
05 IOV1L PIC 9(8) COMP.

03 IOV2A USAGE IS POINTER.
05 IOV2AL PIC 9(8) COMP.
05 IOV2L PIC 9(8) COMP.

03 IOV3A USAGE IS POINTER.
05 IOV3AL PIC 9(8) COMP.
05 IOV3L PIC 9(8) COMP.

01 SENDMSG-BUFFER1 PIC X(16).
01 SENDMSG-BUFFER2 PIC X(16).
01 SENDMSG-BUFFER3 PIC X(16).
01 SENDMSG-BUFNO PIC 9(8) COMP.

PROCEDURE

SET MSG-NAME TO NULLS.
SET MSG-NAME-LEN TO NULLS.
SET IOV TO ADDRESS OF SENDMSG-IOVECTOR.
MOVE 3 TO SENDMSG-BUFNO.
SET MSG-IOVCNT TO ADDRESS OF SENDMSG-BUFNO.
SET IOV1A TO ADDRESS OF SENDMSG-BUFFER1.
MOVE 0 TO MSG-IOV1AL.
MOVE LENGTH OF SENDMSG-BUFFER1 TO MSG-IOV1L.
SET IOV2A TO ADDRESS OF SENDMSG-BUFFER2.
MOVE 0 TO IOV2AL.
MOVE LENGTH OF SENDMSG-BUFFER2 TO IOV2L.
SET IOV3A TO ADDRESS OF SENDMSG-BUFFER3.
MOVE 0 TO IOV3AL.
MOVE LENGTH OF SENDMSG-BUFFER3 TO IOV3L.
SET MSG-ACCRIGHTS TO NULLS.
SET MSG-ACCRIGHTS-LEN TO NULLS.
MOVE X'00000000' TO FLAGS.
MOVE SPACES TO SENDMSG-BUFFER1.
MOVE SPACES TO SENDMSG-BUFFER2.
MOVE SPACES TO SENDMSG-BUFFER3.

CALL 'EZASOKET' USING SOC-FUNCTION S MSGHDR FLAGS ERRNO RETCODE.

Figure 46. SENDMSG Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 121

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing SENDMSG. The field is left-justified and
padded on the right with blanks.

S A value or the address of a halfword binary number specifying the socket
descriptor.

MSG A pointer to an array of message headers from which messages are sent.

Field Description

NAME On input, a pointer to a buffer where the sender’s address is stored
upon completion of the call.

NAME-LEN
On input, a pointer to the size of the address buffer that is filled in
on completion of the call.

IOV On input, a pointer to an array of three fullword structures with the
number of structures equal to the value in IOVCNT and the format
of the structures as follows:

Fullword 1
A pointer to the address of a data buffer.

Fullword 2
Reserved.

Fullword 3
A pointer to the length of the data buffer referenced in
Fullword 1.

In COBOL, the IOV structure must be defined separately in the
Linkage section, as shown in the example.

IOVCNT
On input, a pointer to a fullword binary field specifying the number
of data buffers provided for this call.

ACCRIGHTS
On input, a pointer to the access rights received. This field is
ignored.

ACCRIGHTS-LEN
On input, a pointer to the length of the access rights received. This
field is ignored.

FLAGS
A fullword field containing the following:

122 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONTROUTE 4 Do not route. Routing is provided by the
calling program.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

−1 An error occurred.

SENDTO
SENDTO is similar to SEND, except that it includes the destination address
parameter. The destination address allows you to use the SENDTO call to send
datagrams on a UDP socket, regardless of whether the socket is connected.

The FLAGS parameter allows you to:

v Send out-of-band data, such as interrupts, aborts, and data marked as urgent.

v Suppress use of local routing tables. This implies that the caller takes control of
routing, which requires writing network software.

For datagram sockets, SENDTO transmits the entire datagram if it fits into the
receiving buffer. Extra data is discarded.

For stream sockets, data is processed as streams of information with no boundaries
separating the data. For example, if a program is required to send 1000 bytes, each
call to this function can send any number of bytes, up to the entire 1000 bytes, with
the number of bytes sent returned in RETCODE. Therefore, programs using stream
sockets should place SENDTO in a loop that repeats the call until all data has been
sent.

Note: See “EZACIC04” on page 138 for a subroutine that will translate EBCDIC
input data to ASCII.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 123

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 47 shows an example of SENDTO call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing SENDTO. The field is left-justified and
padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket sending
the data.

FLAGS
A fullword field that returns one of the following:

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SENDTO'.
01 S PIC 9(4) BINARY.
01 FLAGS. PIC 9(8) BINARY.

88 NO-FLAG VALUE IS 0.
88 OOB VALUE IS 1.
88 DONT-ROUTE VALUE IS 4.

01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 NAME

03 FAMILY PIC 9(4) BINARY.
03 PORT PIC 9(4) BINARY.
03 IP-ADDRESS PIC 9(8) BINARY.
03 RESERVED PIC X(8).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S FLAGS NBYTE

BUF NAME ERRNO RETCODE.

Figure 47. SENDTO Call Instruction Example

124 z/OS V1R2.0 CS: IP IMS Sockets Guide

Literal Value Binary Value Description

NO-FLAG 0 No flag is set. The command behaves like a
WRITE call.

OOB 1 Send out-of-band data. (Stream sockets
only.) Even if the OOB flag is not set,
out-of-band data can be read if the
SO-OOBINLINE option is set for the socket.

DONT-ROUTE 4 Do not route. Routing is provided by the
calling program.

NBYTE
A fullword binary number set to the number of bytes to transmit.

BUF Specifies the buffer containing the data to be transmitted. BUF should be
the size specified in NBYTE.

NAME Specifies the socket name structure as follows:

FAMILY
A halfword binary field containing the addressing family. For TCP/IP
the value must be 2, indicating AF_INET.

PORT A halfword binary field containing the port number bound to the
socket.

IP-ADDRESS
A fullword binary field containing the socket’s 32-bit internet
address.

RESERVED
Specifies 8-byte reserved field. This field is required, but not used.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

≥0 A successful call. The value is set to the number of bytes
transmitted.

−1 Check ERRNO for an error code.

SETSOCKOPT
The SETSOCKOPT call sets the options associated with a socket. SETSOCKOPT
can be called only for sockets in the AF_INET domain.

The OPTVAL and OPTLEN parameters are used to pass data used by the
particular set command. The OPTVAL parameter points to a buffer containing the
data needed by the set command. The OPTVAL parameter is optional and can be
set to 0, if data is not needed by the command. The OPTLEN parameter must be
set to the size of the data pointed to by OPTVAL.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 125

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 48 shows an example of SETSOCKOPT call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'SETSOCKOPT'. The field is
left-justified and padded to the right with blanks.

S A halfword binary number set to the socket whose options are to be set.

OPTNAME
Specify one of the following values.

v The following may be specified for TCP level options.

Note: If not using the literal when specifing a TCP level option, turn on
the high order bit in the option value.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SETSOCKOPT'.
01 S PIC 9(4) BINARY.
01 OPTNAME PIC 9(8) BINARY.

88 TCP_NODELAY VALUE -2147483649 ('x80000001').
88 SO-REUSEADDR VALUE 4.
88 SO-KEEPALIVE VALUE 8.
88 SO-BROADCAST VALUE 32.
88 SO-LINGER VALUE 128.
88 SO-OOBINLINE VALUE 256.
88 SO-SNDBUF VALUE 4097.
88 SO-RCVBUF VALUE 4098.

01 OPTVAL PIC 9(16) BINARY.
01 OPTLEN PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S OPTNAME

OPTVAL OPTLEN ERRNO RETCODE.

Figure 48. SETSOCKOPT Call Instruction Example

126 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

TCP_NODELAY
Toggles the use of Nagle algorithm (RFC 896) for all data sent
over the socket. Under most circumstances, TCP sends data
when it is presented.

When outstanding data has not yet been acknowledged, it
gathers small amounts of output to be sent in a single packet
once an acknowledgment is received. For interactive
applications, such as ones that send a stream of mouse events
that receive no replies, this gathering of output can cause
significant delays. For these types of applications, disabling
Nagle algorithm would improve response time.

When Nagle algorithm is enabled, TCP will wait to send small
amounts of data until the acknowledgment for the previous data
is received.

When Nagle algorithm is disabled, TCP will send small amounts
of data even before the acknowledgment for previous data sent
is received.

v The following may be specified for socket level options:

SO-REUSEADDR
Toggles local address reuse. The default is disabled. This alters
the normal algorithm used in the bind() call.

The normal bind() call algorithm allows each internet address
and port combination to be bound only once. If the address and
port have been bound already, a subsequent bind() will fail and
result error EADDRINUSE.

After the 'SO_REUSEADDR' option is active, the following
situations are supported:

– A server can bind() the same port multiple times as long as
every invocation uses a different local IP address, and the
wildcard address INADDR_ANY is used only one time per
port.

– A server with active client connections can be restarted and
can bind to its port without having to close all of the client
connections.

– For datagram sockets, multicasting is supported so multiple
bind() calls can be made to the same class D address and
port number.

SO-KEEPALIVE
Toggles the TCP keepalive mechanism for a stream socket. The
default is disabled. When activated, the keepalive mechanism
periodically sends a packet on an otherwise idle connection. If
the remote TCP does not respond to the packet or to
retransmissions of the packet, the connection is terminated with
the error ETIMEDOUT.

SO-BROADCAST
Toggles the ability to broadcast messages. This option has no
meaning for stream sockets.

If SO-BROADCAST is enabled, the program can send broadcast
messages over the socket to destinations that support the receipt
of packets.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 127

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|

The default is DISABLED.

SO-LINGER
Controls how TCP/IP deals with data that it has not been able to
transmit when the socket is closed. This option has meaning only
for stream sockets.

– When LINGER is enabled and CLOSE is called, the calling
program is blocked until the data is successfully transmitted or
the connection has timed out.

– When LINGER is disabled, the CLOSE call returns without
blocking the caller, and TCP/IP continues to attempt to send
the data for a specified period of time. Although this usually
provides sufficient time to complete the data transfer, use of
the LINGER option does not guarantee successful completion
because TCP/IP only waits the amount of time specified in
OPTVAL LINGER.

The default is DISABLED.

SO-OOBINLINE
Toggles the ability to receive out-of-band data. This option has
meaning only for stream sockets.

– When this option is enabled, out-of-band data is placed in the
normal data input queue as it is received, and is available to a
RECVFROM or a RECV call whether or not the OOB flag is
set in the call.

– When this option is disabled, out-of-band data is placed in the
priority data input queue as it is received and is available to a
RECV or a RECVFROM call only when the OOB flag is set.

The default is DISABLED.

SO_SNDBUF
Sets the size of the data portion of the TCP/IP send buffer in
OPTVAL. The size of the data portion of the send buffer is
protocol-specific.

SO_RCVBUF
Sets the size of the data portion of the TCP/IP receive buffer in
OPTVAL. The size of the data portion of the receive buffer is
protocol-specific.

OPTVAL
Contains data that further defines the option specified in OPTNAME.

v For OPTNAME of SO-BROADCAST, SO-OOBINLINE, and
SO-REUSEADDR, OPTVAL is a one-word binary integer. Set OPTVAL to
a nonzero positive value to enable the option; set OPTVAL to 0 to
disable the option.

v For SO-LINGER, OPTVAL assumes the following structure:
ONOFF PIC X(4).
LINGER PIC 9(8) BINARY.

Set ONOFF to a nonzero value to enable the option; set it to 0 to disable
the option. Set the LINGER value to the amount of time (in seconds)
TCP/IP will linger after the CLOSE call.

128 z/OS V1R2.0 CS: IP IMS Sockets Guide

OPTLEN
A fullword binary number specifying the length of the data returned in
OPTVAL.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

SHUTDOWN
One way to terminate a network connection is to issue the CLOSE call which
attempts to complete all outstanding data transmission requests prior to breaking
the connection. The SHUTDOWN call can be used to close one-way traffic while
completing data transfer in the other direction. The HOW parameter determines the
direction of traffic to shutdown.

When the CLOSE call is used, the SETSOCKOPT OPTVAL LINGER parameter
determines the amount of time the system will wait before releasing the connection.
For example, with a LINGER value of 30 seconds, system resources (including the
IMS or CICS transaction) will remain in the system for up to 30 seconds after the
CLOSE call is issued. In high volume, transaction-based systems like CICS and
IMS, this can impact performance severely.

If the SHUTDOWN call is issued when the CLOSE call is received, the connection
can be closed immediately, rather than waiting for the 30 second delay.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 49 on page 130 shows an example of SHUTDOWN call instructions.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 129

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing SHUTDOWN. The field is left-justified
and padded on the right with blanks.

S A halfword binary number set to the socket descriptor of the socket to be
shutdown.

HOW A fullword binary field. Set to specify whether all or part of a connection is
to be shut down. The following values can be set:

Value Description

0 (END-FROM)
Ends further receive operations.

1 (END-TO) Ends further send operations.

2 (END-BOTH)
Ends further send and receive operations.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

SOCKET
The SOCKET call creates an endpoint for communication and returns a socket
descriptor representing the endpoint.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SHUTDOWN'.
01 S PIC 9(4) BINARY.
01 HOW PIC 9(8) BINARY.

88 END-FROM VALUE 0.
88 END-TO VALUE 1.
88 END-BOTH VALUE 2.

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S HOW ERRNO RETCODE.

Figure 49. SHUTDOWN Call Instruction Example

130 z/OS V1R2.0 CS: IP IMS Sockets Guide

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 50 shows an example of SOCKET call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing 'SOCKET'. The field is left-justified and
padded on the right with blanks.

AF A fullword binary field set to the addressing family. For TCP/IP the value is
set to 2 for AF_INET.

SOCTYPE
A fullword binary field set to the type of socket required. The types are:

Value Description

1 Stream sockets provide sequenced, two-way byte streams that are
reliable and connection-oriented. They support a mechanism for
out-of-band data.

2 Datagram sockets provide datagrams, which are connectionless
messages of a fixed maximum length whose reliability is not
guaranteed. Datagrams can be corrupted, received out of order,
lost, or delivered multiple times.

3 Raw sockets provide the interface to internal protocols (such as IP
and ICMP).

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'SOCKET'.
01 AF PIC 9(8) COMP VALUE 2.
01 SOCTYPE PIC 9(8) BINARY.

88 STREAM VALUE 1.
88 DATAGRAM VALUE 2.
88 RAW VALUE 3.

01 PROTO PIC 9(8) BINARY.
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION AF SOCTYPE

PROTO ERRNO RETCODE.

Figure 50. SOCKET Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 131

PROTO
A fullword binary field set to the protocol to be used for the socket. If this
field is set to 0, the default protocol is used. For streams, the default is
TCP; for datagrams, the default is UDP.

PROTO numbers are found in the hlq.etc.proto data set.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
> or = 0

Contains the new socket descriptor.
−1 Check ERRNO for an error code.

TAKESOCKET
The TAKESOCKET call acquires a socket from another program and creates a new
socket. Typically, a child server issues this call using client ID and socket descriptor
data that it obtained from the concurrent server. See “GIVESOCKET” on page 91
for a discussion of the use of GETSOCKET and TAKESOCKET calls.

Note: When TAKESOCKET is issued, a new socket descriptor is returned in
RETCODE. You should use this new socket descriptor in subsequent calls
such as GETSOCKOPT, which require the S (socket descriptor) parameter.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 51 on page 133 shows an example of TAKESOCKET call instructions.

132 z/OS V1R2.0 CS: IP IMS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing TAKESOCKET. The field is left-justified
and padded to the right with blanks.

SOCRECV
A halfword binary field set to the descriptor of the socket to be taken. The
socket to be taken is passed by the concurrent server.

CLIENT
Specifies the client ID of the program that is giving the socket. In CICS and
IMS, these parameters are passed by the Listener program to the program
that issues the TAKESOCKET call.

v In CICS, the information is obtained using EXEC CICS RETRIEVE.

v In IMS, the information is obtained by issuing GU TIM.

DOMAIN
A fullword binary field set to domain of the program giving the
socket. It is always 2, indicating AF_INET.

NAME Specifies an 8-byte character field set to the MVS™ address space
identifier of the program that gave the socket.

TASK Specifies an 8-byte character field set to the task identifier of the
task that gave the socket.

RESERVED
A 20-byte reserved field. This field is required, but not used.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description
≥ 0 Contains the new socket descriptor.
−1 Check ERRNO for an error code.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'TAKESOCKET'.
01 SOCRECV PIC 9(4) BINARY.
01 CLIENT.

03 DOMAIN PIC 9(8) BINARY.
03 NAME PIC X(8).
03 TASK PIC X(8).
03 RESERVED PIC X(20).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION SOCRECV CLIENT

ERRNO RETCODE.

Figure 51. TAKESOCKET Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 133

TERMAPI
This call terminates the session created by INITAPI.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 52 shows an example of TERMAPI call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing TERMAPI. The field is left-justified and
padded to the right with blanks.

WRITE
The WRITE call writes data on a connected socket. This call is similar to SEND,
except that it lacks the control flags available with SEND.

For datagram sockets the WRITE call writes the entire datagram if it fits into the
receiving buffer.

Stream sockets act like streams of information with no boundaries separating data.
For example, if a program wishes to send 1000 bytes, each call to this function can
send any number of bytes, up to the entire 1000 bytes. The number of bytes sent
will be returned in RETCODE. Therefore, programs using stream sockets should
place this call in a loop, calling this function until all data has been sent.

See “EZACIC04” on page 138 for a subroutine that will translate EBCDIC output
data to ASCII.

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'TERMAPI'.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION.

Figure 52. TERMAPI Call Instruction Example

134 z/OS V1R2.0 CS: IP IMS Sockets Guide

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 53 shows an example of WRITE call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values Set by the Application
SOC-FUNCTION

A 16-byte character field containing WRITE. The field is left-justified and
padded on the right with blanks.

S A halfword binary field set to the socket descriptor.

NBYTE
A fullword binary field set to the number of bytes of data to be transmitted.

BUF Specifies the buffer containing the data to be transmitted.

Parameter Values Returned to the Application
ERRNO

A fullword binary field. If RETCODE is negative, the field contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field that returns one of the following:

Value Description

WORKING STORAGE
01 SOC-FUNCTION PIC X(16) VALUE IS 'WRITE'.
01 S PIC 9(4) BINARY.
01 NBYTE PIC 9(8) BINARY.
01 BUF PIC X(length of buffer).
01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC S9(8) BINARY.

PROCEDURE
CALL 'EZASOKET' USING SOC-FUNCTION S NBYTE BUF

ERRNO RETCODE.

Figure 53. WRITE Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 135

≥0 A successful call. A return code greater than 0 indicates the number
of bytes of data written.

−1 Check ERRNO for an error code.

WRITEV
The WRITEV function writes data on a socket from a set of buffers.

The following requirements apply to this call:

Authorization: Supervisor state or problem state, any PSW key.

Dispatchable unit mode: Task.

Cross memory mode: PASN = HASN.

Amode: 31-bit or 24-bit.

Note: See “Addressability mode (Amode) considerations”
under “Environmental Restrictions and Programming
Requirements” on page 61.

ASC mode: Primary address space control (ASC) mode.

Interrupt status: Enabled for interrupts.

Locks: Unlocked.

Control parameters: All parameters must be addressable by the caller and in the
primary address space.

Figure 54 shows an example of WRITEV call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

WORKING-STORAGE SECTION.
01 SOKET-FUNCTION PIC X(16) VALUE 'WRITEV'.
01 S PIC 9(4) BINARY.
01 IOVCNT PIC 9(4) BINARY.

01 IOV.
03 BUFFER-ENTRY OCCURS N TIMES.

05 BUFFER_ADDR POINTER.
05 RESERVED PIC X(4).
05 BUFFER_LENGTH PIC 9(4).

01 ERRNO PIC 9(8) BINARY.
01 RETCODE PIC 9(8) BINARY.

PROCEDURE

SET BUFFER-POINTER(1) TO ADDRESS-OF BUFFER1.
SET BUFFER-LENGTH(1) TO LENGTH-OF BUFFER1.
SET BUFFER-POINTER(2) TO ADDRESS-OF BUFFER2.
SET BUFFER-LENGTH(2) TO LENGTH-OF BUFFER2.
" " " " "
" " " " "
SET BUFFER-POINTER(n) TO ADDRESS-OF BUFFERn.
SET BUFFER-LENGTH(n) TO LENGTH-OF BUFFERn.

CALL 'EZASOKET' USING SOC-FUNCTION S IOV IOVCNT ERRNO RETCODE.

Figure 54. WRITEV Call Instruction Example

136 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameter Values Set by the Application
S A value or the address of a halfword binary number specifying the

descriptor of the socket from which the data is to be written.

IOV An array of tripleword structures with the number of structures equal to the
value in IOVCNT and the format of the structures as follows:

Fullword 1
The address of a data buffer.

Fullword 2
Reserved.

Fullword 3
The length of the data buffer referenced in Fullword 1.

IOVCNT
A fullword binary field specifying the number of data buffers provided for this
call.

Parameters Returned by the Application
ERRNO

A fullword binary field. If RETCODE is negative, this contains an error
number. See “Appendix A. Return Codes” on page 193 for information about
ERRNO return codes.

RETCODE
A fullword binary field.

Value Meaning

<0 Check ERRNO for an error code.

0 Connection partner has closed connection.

>0 Number of bytes sent.

Using Data Translation Programs for Socket Call Interface
In addition to the socket calls, you can use the following utility programs to translate
data:

Data Translation
TCP/IP hosts and networks use ASCII data notation; MVS TCP/IP and its
subsystems use EBCDIC data notation. In situations where data must be translated
from one notation to the other, you can use the following utility programs:
v EZACIC04 translates EBCDIC data to ASCII data.
v EZACIC05 translates ASCII data to EBCDIC data.

Bit String Processing
In C-language, bit strings are often used to convey flags, switch settings, and so on;
TCP/IP makes frequent uses of bit strings. However, since bit strings are difficult to
decode in COBOL, TCP/IP includes:

v EZACIC06 translates bit-masks into character arrays and character arrays into
bit-masks.

v EZACIC08 interprets the variable length address list in the HOSTENT structure
returned by GETHOSTBYNAME or GETHOSTBYADDR.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 137

EZACIC04

The EZACIC04 program is used to translate EBCDIC data to ASCII data.

Figure 55 shows an example of EZACIC04 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

OUT-BUFFER
A buffer that contains the following:
v When called, EBCDIC data
v Upon return, ASCII data

LENGTH
Specifies the length of the data to be translated.

WORKING STORAGE
01 OUT-BUFFER PIC X(length of output).
01 LENGTH PIC 9(8) BINARY.

PROCEDURE
CALL 'EZACIC04' USING OUT-BUFFER LENGTH.

Figure 55. EZACIC04 Call Instruction Example

138 z/OS V1R2.0 CS: IP IMS Sockets Guide

EZACIC05

The EZACIC05 program is used to translate ASCII data to EBCDIC data. EBCDIC
data is required by COBOL, PL/1, and assembler language programs.

Figure 56 shows an example of EZACIC05 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

IN-BUFFER
A buffer that contains the following:
v When called, ASCII data
v Upon return, EBCDIC data

LENGTH
Specifies the length of the data to be translated.

WORKING STORAGE
01 IN-BUFFER PIC X(length of output)
01 LENGTH PIC 9(8) BINARY VALUE

PROCEDURE
CALL 'EZACIC05' USING IN-BUFFER LENGTH.

Figure 56. EZACIC05 Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 139

EZACIC06

The SELECT call uses bit strings to specify the sockets to test and to return the
results of the test. Because bit strings are difficult to manage in COBOL, you might
want to use the assembler language program EZACIC06 to translate them to
character strings to be used with the SELECT call.

Figure 57 shows an example of EZACIC06 call instructions.

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

TOKEN
Specifies a 16-character identifier. This identifier is required and it must be
the first parameter in the list.

CH-MASK
Specifies the character array where nn is the maximum number of sockets
in the array.

BIT-MASK
Specifies the bit string to be translated for the SELECT call. The bits are
ordered right to left with the rightmost bit representing socket 0. The socket
positions in the character array are indexed starting with one, which makes

WORKING STORAGE
01 TOKEN PIC X(16) VALUE 'TCPIPBITMASKCOBL
01 CHAR-MASK.

05 CHAR-STRING PIC X(nn).

01 CHAR-ARRAY REDEFINES CHAR-MASK.
05 CHAR-ENTRY-TABLE OCCURS nn TIMES.

10 CHAR-ENTRY PIC X(1).
01 BIT-MASK.

05 BIT-ARRAY-FWDS PIC 9(16) COMP.

01 BIT-FUNCTION-CODES.
05 CTOB PIC X(4) VALUE 'CTOB'.
05 BTOC PIC X(4) VALUE 'BTOC'.

01 BIT-MASK-LENGTH PIC 9(8) COMP VALUE 50 .

PROCEDURE CALL (to convert from character to binary)
CALL 'EZACIC06' USING TOKEN

BIT-MASK
CHAR-MASK
BIT-MASK-LENGTH
RETCODE.

PROCEDURE CALL (to convert from binary to character)
CALL 'EZACIC06' USING TOKEN

BIT-MASK
CHAR-MASK
BIT-MASK-LENGTH
RETCODE.

Figure 57. EZACIC06 Call Instruction Example

140 z/OS V1R2.0 CS: IP IMS Sockets Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

socket 0 index number one in the character array. You should keep this in
mind when turning character positions on and off.

Commands
BTOC specifies bit string to character array translation.

CTOB specifies character array to bit string translation.

BIT-MASK-LENGTH
Specifies the length of the bit-mask.

RETCODE
A binary field that returns one of the following:

Value Description
0 Successful call.
−1 Check ERRNO for an error code.

Examples: If you want to use the SELECT call to test sockets 0, 5, and 9, and
you are using a character array to represent the sockets, you must set the
appropriate characters in the character array to 1. In this example, index positions
1, 6 and 10 in the character array are set to 1. Then you can call EZACIC06 with
the command parameter set to CTOB. When EZACIC06 returns, BIT-MASK
contains a fullword with bits 0, 5, and 9 (numbered from the right) turned on as
required by the SELECT call. These instructions process the bit string shown in the
following example.
MOVE ZEROS TO CHAR-STRING.
MOVE '1'TO CHAR-ENTRY(1), CHAR-ENTRY(6), CHAR-ENTRY(10).
CALL 'EZACIC06' USING TOKEN CTOB BIT-MASK CH-MASK

BIT-LENGTH RETCODE.
MOVE BIT-MASK TO

When the select call returns and you want to check the bit-mask string for socket
activity, enter the following instructions.
MOVE TO BIT-MASK.
CALL 'EZACIC06' USING TOKEN BTOC BIT-MASK CH-MASK

BIT-LENGTH RETCODE.
PERFORM TEST-SOCKET THRU TEST-SOCKET-EXIT VARYING IDX

FROM 1 BY 1 UNTIL IDX EQUAL 10.

TEST-SOCKET.
IF CHAR-ENTRY(IDX) EQUAL '1'

THEN PERFORM SOCKET-RESPONSE THRU SOCKET-RESPONSE-EXIT
ELSE NEXT SENTENCE.

TEST-SOCKET-EXIT.
EXIT.

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 141

EZACIC08

The GETHOSTBYNAME and GETHOSTBYADDR calls were derived from C socket
calls that return a structure known as HOSTENT. A given TCP/IP host can have
multiple alias names and host internet addresses.

TCP/IP uses indirect addressing to connect the variable number of alias names and
internet addresses in the HOSTENT structure that is returned by the
GETHOSTBYADDR AND GETHOSTBYNAME calls.

If you are coding in PL/1 or assembler language, the HOSTENT structure can be
processed in a relatively straight-forward manner. However, if you are coding in
COBOL, HOSTENT can be more difficult to process and you should use the
EZACIC08 subroutine to process it for you.

It works as follows:

1. GETHOSTBYADDR or GETHOSTBYNAME returns a HOSTENT structure that
indirectly addresses the lists of alias names and internet addresses.

2. Upon return from GETHOSTBYADDR or GETHOSTBYNAME, your program
calls EZACIC08 and passes it the address of the HOSTENT structure.
EZACIC08 processes the structure and returns the following:

v The length of host name, if present

v The host name

v The number of alias names for the host

v The alias name sequence number

v The length of the alias name

v The alias name

v The host internet address type, always 2 for AF_INET

v The host internet address length, always 4 for AF_INET

v The number of host internet addresses for this host

v The host internet address sequence number

v The host internet address

3. If the GETHOSTBYADDR or GETHOSTBYNAME call returns more than one
alias name or host internet address (or above), the application program should
repeat the call to EZACIC08 until all alias names and host internet addresses
have been retrieved.

Figure 58 on page 143 shows an example of EZACIC08 call instructions.

142 z/OS V1R2.0 CS: IP IMS Sockets Guide

For equivalent PL/I and assembler language declarations, see “Converting
Parameter Descriptions” on page 63.

Parameter Values set by the Application

HOSTENT-ADDR
This fullword binary field must contain the address of the HOSTENT
structure (as returned by the GETHOSTBYxxxx call). This variable is the
same as the variable HOSTENT in the GETHOSTBYADDR and
GETHOSTBYNAME socket calls.

HOSTALIAS-SEQ
This halfword field is used by EZACIC08 to index the list of alias names.
When EZACIC08 is called, it adds 1 to the current value of
HOSTALIAS-SEQ and uses the resulting value to index into the table of
alias names. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACIC08. For all subsequent calls
to EZACIC08, this field should contain the HOSTALIAS-SEQ number
returned by the previous invocation.

HOSTADDR-SEQ
This halfword field is used by EZACIC08 to index the list of IP addresses.
When EZACIC08 is called, it adds 1 to the current value of
HOSTADDR-SEQ and uses the resulting value to index into the table of IP
addresses. Therefore, for a given instance of GETHOSTBYxxxx, this field
should be set to 0 for the initial call to EZACIC08. For all subsequent calls
to EZACIC08, this field should contain the HOSTADDR-SEQ number
returned by the previous call.

Parameter Values Returned to the Application

WORKING STORAGE

01 HOSTENT-ADDR PIC 9(8) BINARY.
01 HOSTNAME-LENGTH PIC 9(4) BINARY.
01 HOSTNAME-VALUE PIC X(255)
01 HOSTALIAS-COUNT PIC 9(4) BINARY.
01 HOSTALIAS-SEQ PIC 9(4) BINARY.
01 HOSTALIAS-LENGTH PIC 9(4) BINARY.
01 HOSTALIAS-VALUE PIC X(255)
01 HOSTADDR-TYPE PIC 9(4) BINARY.
01 HOSTADDR-LENGTH PIC 9(4) BINARY.
01 HOSTADDR-COUNT PIC 9(4) BINARY.
01 HOSTADDR-SEQ PIC 9(4) BINARY.
01 HOSTADDR-VALUE PIC 9(8) BINARY.
01 RETURN-CODE PIC 9(8) BINARY.

PROCEDURE

CALL 'EZASOKET' USING 'GETHOSTBYxxxx'
HOSTENT-ADDR
RETCODE.

Where xxxx is ADDR or NAME.

CALL 'EZACIC08' USING HOSTENT-ADDR HOSTNAME-LENGTH
HOSTNAME-VALUE HOSTALIAS-COUNT HOSTALIAS-SEQ
HOSTALIAS-LENGTH HOSTALIAS-VALUE
HOSTADDR-TYPE HOSTADDR-LENGTH HOSTADDR-COUNT
HOSTADDR-SEQ HOSTADDR-VALUE RETURN-CODE

Figure 58. EZAZIC08 Call Instruction Example

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 143

HOSTNAME-LENGTH
This halfword binary field contains the length of the host name (if host
name was returned).

HOSTNAME-VALUE
This 255-byte character string contains the host name (if host name was
returned).

HOSTALIAS-COUNT
This halfword binary field contains the number of alias names returned.

HOSTALIAS-SEQ
This halfword binary field is the sequence number of the alias name
currently found in HOSTALIAS-VALUE.

HOSTALIAS-LENGTH
This halfword binary field contains the length of the alias name currently
found in HOSTALIAS-VALUE.

HOSTALIAS-VALUE
This 255-byte character string contains the alias name returned by this
instance of the call. The length of the alias name is contained in
HOSTALIAS-LENGTH.

HOSTADDR-TYPE
This halfword binary field contains the type of host address. For FAMILY
type AF_INET, HOSTADDR-TYPE is always 2.

HOSTADDR-LENGTH
This halfword binary field contains the length of the host internet address
currently found in HOSTADDR-VALUE. For FAMILY type AF_INET,
HOSTADDR-LENGTH is always set to 4.

HOSTADDR-COUNT
This halfword binary field contains the number of host internet addresses
returned by this instance of the call.

HOSTADDR-SEQ
This halfword binary field contains the sequence number of the host internet
address currently found in HOSTADDR-VALUE.

HOSTADDR-VALUE
This fullword binary field contains a host internet address.

RETURN-CODE
This fullword binary field contains the EZACIC08 return code:

Value Description
0 Successful completion.
-1 HOSTENT address is not valid.

Call Interface PL/1 Sample Programs
This section provides sample programs for the call interface that you can use for a
PL/1 application program.

The following are the sample programs available in the hlq.SEZAINST data set:

Program Description
EZASOKPS PL/1 call interface sample server program
EZASOKPC PL/1 call interface sample client program
CBLOCK PL/1 common variables

144 z/OS V1R2.0 CS: IP IMS Sockets Guide

Sample Code for Server Program
The EZASOKPS PL/I sample program is a server program that shows you how to
use the following calls:
v INITAPI
v SOCKET
v BIND
v GETSOCKNAME
v LISTEN
v ACCEPT
v READ
v WRITE
v CLOSE
v TERMAPI
EZASOKPS: PROC OPTIONS(MAIN);
/* INCLUDE CBLOCK - common variables */
% include CBLOCK;
open file(driver);
/***/
/* */
/* Execute INITAPI */
/* */
/***/
call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,

MAXSNO, ERRNO, RETCODE);
if retcode < 0 then do;

msg = 'FAIL: initapi' || errno;
write file(driver) from (msg);
goto getout;

end;
/***/
/* */
/* Execute SOCKET */
/* */
/***/
call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: socket, stream, internet' || errno;
write file(driver) from (msg);
goto getout;

end;
else sock_stream = retcode;
/***/
/* */
/* Execute BIND */
/* */
/***/
name_id.port = 8888;
name_id.address = '01234567'BX; /* internet address */
call ezasoket(BIND, SOCK_STREAM, NAME_ID,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: bind' || errno;
write file(driver) from (msg);
goto getout;

end;
/***/
/* */
/* Execute GETSOCKNAME */

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 145

/* */
/***/
name_id.port = 8888;
name_id.address = '01234567'BX; /* internet address */
call ezasoket(GETSOCKNAME, SOCK_STREAM,

NAME_ID, ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: getsockname, stream, internet' || errno;
write file(driver) from (msg);

end;
else do;

msg = 'getsockname = ' || name_id.address;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute LISTEN */
/* */
/***/
backlog = 5;
call ezasoket(LISTEN, SOCK_STREAM, BACKLOG,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: listen w/ backlog = 5' || errno;
write file(driver) from (msg);
goto getout;

end;
/***/
/* */
/* Execute ACCEPT */
/* */
/***/
name_id.port = 8888;
name_id.address = '01234567'BX; /* internet address */
call ezasoket(ACCEPT, SOCK_STREAM,

NAME_ID, ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: accept' || errno;
write file(driver) from (msg);

end;
else do;

accpsock = retcode;
msg = 'accept socket = ' || accpsock;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute READ */
/* */
/***/
nbyte = length(bufin);
call ezasoket(READ, ACCPSOCK,

NBYTE, BUFIN, ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: read' || errno;
write file(driver) from (msg);

end;
else do;

msg = 'read = ' || bufin;
write file(driver) from (msg);
bufout = bufin;
nbyte = length(bufout);

end;

146 z/OS V1R2.0 CS: IP IMS Sockets Guide

/***/
/* */
/* Execute WRITE */
/* */
/***/
call ezasoket(WRITE, ACCPSOCK, NBYTE, BUFOUT,

ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: write' || errno;
write file(driver) from (msg);

end;
else do;

msg = 'write = ' || bufout;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute CLOSE accept socket */
/* */
/***/
call ezasoket(CLOSE, ACCPSOCK,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: close, accept sock' || errno;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute TERMAPI */
/* */
/***/
getout:
call ezasoket(TERMAPI);
close file(driver);
end ezasokps;

Sample Program for Client Program
The EZASOKPC PL/I sample program is a client program that shows you how to
use the following calls provided by the call socket interface:
v INITAPI
v SOCKET
v CONNECT
v GETPEERMANE
v WRITE
v READ
v SHUTDOWN
v TERMAPI
EZASOKPC: PROC OPTIONS(MAIN);
/* INCLUDE CBLOCK - common variables */
% include CBLOCK;
open file(driver);
/***/
/* */
/* Execute INITAPI */
/* */
/***/
call ezasoket(INITAPI, MAXSOC, ID, SUBTASK,

MAXSNO, ERRNO, RETCODE);
if retcode < 0 then do;

msg = 'FAIL: initapi' || errno;
write file(driver) from (msg);
goto getout;

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 147

end;
/***/
/* */
/* Execute SOCKET */
/* */
/***/
call ezasoket(SOCKET, AF_INET, TYPE_STREAM, PROTO,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: socket, stream, internet' || errno;
write file(driver) from (msg);
goto getout;

end;
sock_stream = retcode; /* save socket descriptor */
/***/
/* Execute CONNECT */
/* */
/***/
name_id.port = 8888;
name_id.address = '01234567'BX; /* internet address */
call ezasoket(CONNECT, SOCK_STREAM, NAME_ID,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: connect, stream, internet' || errno;
write file(driver) from (msg);
goto getout;

end;
/***/
/* */
/* Execute GETPEERNAME */
/* */
/***/
call ezasoket(GETPEERNAME, SOCK_STREAM,

NAME_ID, ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: getpeername' || errno;
write file(driver) from (msg);

end;
else do;

msg = 'getpeername =' || name_id.address;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute WRITE */
/* */
/***/
bufout = message;
nbyte = length(message);
call ezasoket(WRITE, SOCK_STREAM, NBYTE, BUFOUT,

ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: write' || errno;
write file(driver) from (msg);

end;
else do;

msg = 'write = ' || bufout;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute READ */
/* */

148 z/OS V1R2.0 CS: IP IMS Sockets Guide

/***/
nbyte = length(bufin);
call ezasoket(READ, SOCK_STREAM,

NBYTE, BUFIN, ERRNO, RETCODE);
msg = blank; /* clear field */
if retcode < 0 then do;

msg = 'FAIL: read' || errno;
write file(driver) from (msg);

end;
else do;

msg = 'read = ' || bufin;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute SHUTDOWN from/to */
/* */
/***/
getout:
how = 2;
call ezasoket(SHUTDOWN, SOCK_STREAM, HOW,

ERRNO, RETCODE);
if retcode < 0 then do;

msg = blank; /* clear field */
msg = 'FAIL: shutdown' || errno;
write file(driver) from (msg);

end;
/***/
/* */
/* Execute TERMAPI */
/* */
/***/
call ezasoket(TERMAPI);
close file(driver);
end ezasokpc;

Common Variables Used in PL/1 Sample Programs
The CBLOCK common storage area contains the variables that are used in the
PL/1 programs in this section.
/**/
/* */
/* SOKET COMMON VARIABLES */
/* */
/**/
DCL ABS BUILTIN;
DCL ADDR BUILTIN;
DCL ACCEPT CHAR(16) INIT('ACCEPT');
DCL ACCPSOCK FIXED BIN(15); /* temporary ACCEPT socket */
DCL AF_INET FIXED BIN(31) INIT(2); /* internet domain */
DCL AF_IUCV FIXED BIN(31) INIT(17); /* iucv domain */
DCL ALIAS CHAR(255); /* alternate NAME */
DCL APITYPE FIXED BIN(15) INIT(2); /* default API type */
DCL BACKLOG FIXED BIN(31); /* max length of pending queue*/
DCL BADNAME CHAR(20); /* temporary name */
DCL BIND CHAR(16) INIT('BIND');
DCL BIT BUILTIN;
DCL BITZERO BIT(1); /* bit zero value */
DCL BLANK CHAR(255) INIT(' '); /* */
DCL BUF CHAR(80) INIT(' '); /* macro READ/WRITE buffer */
DCL BUFF CHAR(15) INIT(' '); /* short buffer */
DCL BUFFER CHAR(32767) INIT(' '); /* BUFFER */
DCL BUFIN CHAR(32767) INIT(' '); /* Read buffer */
DCL BUFOUT CHAR(32767) INIT(' '); /* WRITE buffer */
DCL 1 CLIENT, /* socket addr of connection peer */

2 DOMAIN FIXED BIN(31) INIT(2), /* domain of client (AF_INET) */

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 149

2 NAME CHAR(8) INIT(' '), /* addr identifier for client */
2 TASK CHAR(8) INIT(' '), /* task identifier for client */
2 RESERVED CHAR(20) INIT(' '); /* reserved */

DCL CLOSE CHAR(16) INIT('CLOSE');
DCL COMMAND FIXED BIN(31) INIT(3); /* Query FNDELAY flag */
DCL CONNECT CHAR(16) INIT('CONNECT');
DCL COUNT FIXED BIN(31) INIT(100); /* elements in GRP_IOCTL_TABLE*/
DCL DATA_SOCK FIXED BIN(15); /* temporary datagram socket */
DCL DEF FIXED BIN(31) INIT(0); /* default protocol */
DCL DRIVER FILE OUTPUT UNBUF ENV(FB RECSIZE(100)) RECORD;
DCL ERETMSK CHAR(4); /* indicate exception events */
DCL ERR FIXED BIN(31); /* error number variable */
DCL ERRNO FIXED BIN(31) INIT(0); /* error number */
DCL ESNDMSK CHAR(4); /* check for pending */

/* exception events */
DCL EXIT LABEL; /* common exit point */
DCL EZACIC05 ENTRY OPTIONS(RETCODE,ASM,INTER) EXT;
DCL EZASOKET ENTRY OPTIONS(RETCODE,ASM,INTER) EXT; /* socket call */
DCL FCNTL CHAR(16) INIT('FCNTL');
DCL FIONBIO FIXED BIN(31) INIT(-2147178626);/* flag: nonblocking */
DCL FIONREAD FIXED BIN(31) INIT(+1074046847);/* flag:#readable bytes*/
DCL FLAGS FIXED BIN(31) INIT(0); /* default: no flags */

/* 1 = OOB, SEND OUT-OF-BAND*/
/* 4 = DON'T ROUTE */

DCL GETCLIENTID CHAR(16) INIT('GETCLIENTID');
DCL GETHOSTBYADDR CHAR(16) INIT('GETHOSTBYADDR');
DCL GETHOSTBYNAME CHAR(16) INIT('GETHOSTBYNAME');
DCL GETHOSTNAME CHAR(16) INIT('GETHOSTNAME');
DCL GETHOSTID CHAR(16) INIT('GETHOSTID');
DCL GETIBMOPT CHAR(16) INIT('GETIBMOPT');
DCL GETPEERNAME CHAR(16) INIT('GETPEERNAME');
DCL GETSOCKNAME CHAR(16) INIT('GETSOCKNAME');
DCL GETSOCKOPT CHAR(16) INIT('GETSOCKOPT');
DCL GIVESOCKET CHAR(16) INIT('GIVESOCKET');
DCL GLOBAL CHAR(16) INIT('GLOBAL');
DCL HOSTADDR FIXED BIN(31); /* host internet address */
DCL HOW FIXED BIN(31) INIT(2); /* how shutdown is to be done */
DCL I FIXED BIN(15); /* loop index */
DCL ICMP FIXED BIN(31) INIT(2); /* prototype icmp ??? */
DCL 1 ID, /* */

2 TCPNAME CHAR(8) INIT('TCPIP'), /* remote address space */
2 ADSNAME CHAR(8) INIT('USER19J'); /* local address space */

DCL IDENT POINTER; /* TCP/IP Addr Space */
DCL IFCONF CHAR(255); /* configuration structure */
DCL IFREQ CHAR(255); /* interface structure */
DCL INDEX BUILTIN;
DCL IOCTL CHAR(16) INIT('IOCTL');
DCL IOCTL_CMD FIXED BIN(31); /* ioctl command */
DCL IOCTL_REQARG POINTER ; /* send pointer to data area*/
DCL IOCTL_RETARG POINTER ; /* return pointer to data area*/
DCL IOCTL_REQ00 FIXED BIN(31); /* command request argument */
DCL IOCTL_REQ04 FIXED BIN(31); /* command request argument */
DCL IOCTL_REQ08 FIXED BIN(31); /* command request argument */
DCL IOCTL_REQ32 CHAR(32) INIT(' '); /* command request argument */
DCL IOCTL_RET00 FIXED BIN(31); /* command return argument */
DCL IOCTL_RET04 FIXED BIN(31); /* command return argument */
DCL INITAPI CHAR(16) INIT('INITAPI'); /* */
DCL 1 INTERNET, /* internet address */

2 NETID1 FIXED BIN(31) INIT(9), /* network id, part 1 */
2 NETID2 FIXED BIN(31) INIT(67), /* network id, part 2 */
2 SUBNETID FIXED BIN(31) INIT(30), /* subnet id */
2 HOSTID FIXED BIN(31) INIT(137); /* host id */

DCL IP FIXED BIN(31) INIT(1); /* prototype ip ??? */
DCL J FIXED BIN(15); /* loop index */
DCL K FIXED BIN(15); /* loop index */
DCL LENGTH BUILTIN;
DCL LABL CHAR(9);

150 z/OS V1R2.0 CS: IP IMS Sockets Guide

DCL LISTEN CHAR(16) INIT('LISTEN');
DCL MAXSNO FIXED BIN(31) INIT(0); /* max descriptor assigned */
DCL MAXSOC FIXED BIN(15) INIT(255); /* largest socket # checked */
DCL MESSAGE CHAR(50) INIT('I love my 1 @ Rottweiler!'); /* message */
DCL MSG CHAR(100) INIT(' '); /* message text */
DCL 1 NAME_ID, /* socket addr of connection peer */

2 FAMILY FIXED BIN(15) INIT(2), /*addr'g family; TCP/IP def */
2 PORT FIXED BIN(15), /* system assigned port # */
2 ADDRESS FIXED BIN(31), /* 32-bit internet */
2 RESERVED CHAR(8); /* reserved */

DCL NAMEL CHAR(255) VARYING; /* name field, long */
DCL NAMES CHAR(24); /* name field, short */
DCL NAMELEN FIXED BIN(31); /* length of name/alias field */
DCL NBYTE FIXED BIN(31); /* Number of bytes in buffer */
DCL NOTE(3) CHAR(25) INIT('Now is the time for 198 g',

'ood people to come to the',
' aid of their parties!');

DCL NS FIXED BIN(15); /* socket descriptor, new */
DCL NULL BUILTIN;
DCL OPTL FIXED BIN(31); /* length of OPTVAL string */
DCL OPTLEN FIXED BIN(31); /* length of OPTVAL string */
DCL OPTN CHAR(15); /* OPTNAME value (macro) */
DCL OPTNAME FIXED BIN(31); /* OPTNAME value (call) */
DCL OPTVAL CHAR(255); /* GETSOCKOPT option data */
DCL OPTVALD FIXED BIN(31); /* SETSOCKOPT option data */
DCL 1 OPT_STRUC, /* structure for option */

2 ON_OFF FIXED BIN(31) INIT(1), /* enable option */
2 TIME FIXED BIN(31) INIT(5); /* time-out in seconds */

DCL 1 OPT_STRUCT, /* structure for option */
2 ON FIXED BIN(31), /* used for getsockopt */
2 TIMEOUT FIXED BIN(31); /* time-out in seconds */

DCL PLITEST BUILTIN; /* debug tool */
DCL PROTO FIXED BIN(31) INIT(0); /* prototype default */
DCL READ CHAR(16) INIT('READ');
DCL READV CHAR(16) INIT('READV');
DCL RECV CHAR(16) INIT('RECV');
DCL RECVFROM CHAR(16) INIT('RECVFROM');
DCL RECVMSG CHAR(16) INIT('RECVMSG');
DCL REUSE FIXED BIN(31) INIT('4'); /* toggle, reuse local addr */
DCL REQARG FIXED BIN(31); /* command request argument */
DCL RETC FIXED BIN(31); /* return code variable */
DCL RETARG CHAR(255); /* return argument data area */
DCL RETCODE FIXED BIN(31) INIT(0); /* return code */
DCL RETLEN FIXED BIN(31); /* return area data length */
DCL RRETMSK CHAR(4); /* indicate READ EVENTS */
DCL RSNDMSK CHAR(4): /* check for pending read events */
DCL RTENTRY CHAR(50) INIT('dummy table'); /* router entry */
DCL SAVEFAM FIXED BIN(15); /* temporary family name */
DCL SELECB CHAR(4) INIT('1');
DCL SELECT CHAR(16) INIT('SELECT');
DCL SELECTEX CHAR(16) INIT('SELECTEX');
DCL SEND CHAR(16) INIT('SEND');
DCL SENDMSG CHAR(16) INIT('SENDMSG');
DCL SENDTO CHAR(16) INIT('SENDTO');
DCL SETSOCKOPT CHAR(16) INIT('SETSOCKOPT');
DCL SHUTDOWN CHAR(16) INIT('SHUTDOWN');
DCL SIOCADDRT FIXED BIN(31) INIT(-2144295158);

/* flag: add routing entry*/
DCL SIOCATMARK FIXED BIN(31) INIT(+1074046727);

/* flag: out-of-band data*/
DCL SIOCDELRT FIXED BIN(31) INIT(-2144295157);

/* flag: delete routing */
DCL SIOCGIFADDR FIXED BIN(31) INIT(-1071601907);

/*flag: network int addr*/
DCL SIOCGIFBRDADDR FIXED BIN(31) INIT(-1071601902);

/*flag net broadcast*/
DCL SIOCGIFCONF FIXED BIN(31) INIT(-1073174764);

Chapter 7. Using the CALL Instruction Application Programming Interface (API) 151

/* flag: netw int config*/
DCL SIOCGIFDSTADDR FIXED BIN(31) INIT(-1071601905);

/* flag: net des addr*/
DCL SIOCGIFFLAGS FIXED BIN(31) INIT(-1071601903);

/* flag: net intf flags*/
DCL SIOCGIFMETRIC FIXED BIN(31) INIT(-1071601897);

/* flag: get rout metr*/
DCL SIOCGIFNETMASK FIXED BIN(31) INIT(-1071601899);

/* flag: network mask*/
DCL SIOCGIFNONSENSE FIXED BIN(31) INIT(-1234567890);

/* flag: nonsense */
DCL SIOCSIFMETRIC FIXED BIN(31) INIT(-2145343720);

/* flag: set rout metr*/
DCL SOCK FIXED BIN(15); /* socket descriptor */
DCL SOCKET CHAR(16) INIT('SOCKET');
DCL SOCK_DATAGRAM FIXED BIN(15); /* socket descriptor datagram */
DCL SOCK_RAW FIXED BIN(15); /* socket descriptor raw */
DCL SOCK_STREAM FIXED BIN(15); /* stream socket descriptor */
DCL SOCK_STREAM_1 FIXED BIN(15); /* stream socket descriptor */
DCL SO_BROADCAST FIXED BIN(31) INIT(32); /* toggle, broadcast msg */
DCL SO_ERROR FIXED BIN(31) INIT(4103); /* check/clear async error */
DCL SO_KEEPALIVE FIXED BIN(31) INIT(8); /* request status of stream*/
DCL SO_LINGER FIXED BIN(31) INIT(128); /* toggle, linger on close */
DCL SO_OOBINLINE FIXED BIN(31) INIT(256);/*toggle, out-of-bound data*/
DCL SO_REUSEADDR FIXED

BIN(31) INIT(4); /* toggle, local address reuse*/
DCL SO_SNDBUF FIXED BIN(31) INIT(4097);
DCL SO_TYPE FIXED BIN(31) INIT(4104); /* return type of socket */
DCL STRING BUILTIN;
DCL SUBSTR BUILTIN;
DCL SUBTASK CHAR(8) INIT('ANYNAME'); /* task/path identifier */
DCL SYNC CHAR(16) INIT('SYNC');
DCL TAKESOCKET CHAR(16) INIT('TAKESOCKET');
DCL TASK CHAR(16) INIT('TASK');
DCL TERMAPI CHAR(16) INIT('TERMAPI'); /* */
DCL TIME BUILTIN;
DCL 1 TIMEOUT,

2 TIME_SEC FIXED BIN(31), /* value in secs */
2 TIME_MSEC FIXED BIN(31); /* value in millisecs */

DCL TYPE_DATAGRAM FIXED BIN(31) INIT(2);/*fixed lengthconnectionless*/
DCL TYPE_RAW FIXED BIN(31) INIT(3); /* internal protocol interface */
DCL TYPE_STREAM FIXED BIN(31) INIT(1); /* two-way byte stream */
DCL WRETMSK CHAR(4); /* indicate WRITE EVENTS */
DCL WRITE CHAR(16) INIT('WRITE');
DCL WRITEV CHAR(16) INIT('WRITEV');
DCL WSNDMSK CHAR(4); /*check for pending write events */

152 z/OS V1R2.0 CS: IP IMS Sockets Guide

Chapter 8. IMS Listener Samples

This chapter includes sample programs using the IMS Listener. The following
samples are included:

v “IMS TCP/IP Control Statements”

v “Sample Program Explicit-Mode” on page 155

v “Sample Program Implicit-Mode” on page 163

v “Sample Program - IMS MPP Client” on page 171

IMS TCP/IP Control Statements
This chapter contains examples of the control statements required to define and
initiate the various IMS TCP/IP components.

JCL for Starting a Message Processing Region
The following is an example of the JCL that is required to start an IMS message
processing region in which TCP/IP servers can operate. Note the STEPLIB
statements that point to TCP/IP and the C run-time library. A C run-time library is
required when you use the GETHOSTBYADDR or GETHOSTBYNAME call. For
more information, see the z/OS Program Directory or the section on C compilers
and run time libraries in z/OS Communications Server: IP Application Programming
Interface Guide.

This sample is based on the IMS procedure (DFSMPR). You might have to modify
the language run time libraries to match your programming language requirements.
// PROC SOUT=A,RGN=2M,SYS2=,
// CL1=001,CL2=000,CL3=000,CL4=000,
// OPT=N,OVLA=0,SPIE=0,VALCK=0,TLIM=00,
// PCB=000,PRLD=,STIMER=,SOD=,DBLDL=,
// NBA=,OBA=,IMSID=IMS1,AGN=,VSFX=,VFREE=,
// SSM=,PREINIT=,ALTID=,PWFI=N,
// APARM=
//*
//REGION EXEC PGM=DFSRRC00,REGION=&RGN,;
// TIME=1440,DPRTY=(12,0),
// PARM=(MSG,&CL1&CL2&CL3&CL4,;
// &OPT&OVLA&SPIE&VALCK&TLIM&PCB,;
// &PRLD,&STIMER,&SOD,&DBLDL,&NBA,;
// &OBA,&IMSID,&AGN,&VSFX,&VFREE,;
// &SSM,&PREINIT,&ALTID,&PWFI,;
// '&APARM')
//&*;
//STEPLIB DD DSN=IMS31.&SYS2;RESLIB,DISP=SHR
// DD DSN=IMS31.&SYS2;PGMLIB,DISP=SHR
// DD DSN=PLI.LL.V2R3M0.SIBMLINK,DISP=SHR
// DD DSN=PLI.LL.V2R3M0.PLILINK,DISP=SHR
// DD DSN=C370.LL.V2R2M0.SEDCLINK,DISP=SHR
//* Use the following for LE/370 C run-time libraries:
//* DD DSN=CEE.V1R3M0.SCEERUN,DISP=SHR
// DD DSN=TCPIP.SEZATCP,DISP=SHR
//PROCLIB DD DSN=IMS31.&SYS2;PROCLIB,DISP=SHR
//SYSUDUMP DD SYSOUT=&SOUT,DCB=(LRECL=121,BLKSIZE=3129,RECFM=VBA),;
// SPACE=(125,(2500,100),RLSE,,ROUND)
//

© Copyright IBM Corp. 1994, 2001 153

JCL for Linking the IMS Listener
The following examples are JCL that can be used to link the IMS listener.

EZAIMSCZ JCLIN
//EZAIMSCZ JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//**
//*NOTE: ANY ZONE UPDATED WITH THE LINK COMMAND OR CROSS-ZONE *
//* INFORMATION CANNOT BE PROCESSED BY SMP/E R6 OR EARLIER*
//**
//* *
//* Function: Perform SMP/E LINK for IMS module *
//* *
//* Instructions: *
//* Change all lower case characters to values *
//* suitable for your installation. *
//* *
//* tcptgt : TCP/IP Target Zone *
//* imszone : IMS Target Zone *
//* *
//* This job uses the installation procedure EZAPROC by default*
//* If you have chosen to use DDDEFs to install TCP/IP, you *
//* must perform the following steps: *
//* Delete or comment the 'LNKCZ EXEC PROC=EZAPROC' statement*
//* *
//* Uncomment the 'LNKCZ EXEC PROC=EZAPROCD' statement. *
//* *
//* Change the high-level qualifier 'ims' to match the *
//* high-level qualifier for your installation's IMS RESLIB *
//* data set. *
//* *
//LNKCZ EXEC PROC=EZAPROC
//*LNKCZ EXEC PROC=EZAPROCD
//**
//RESLIB DD DSN=ims.RESLIB,DISP=SHR
//**
//*
//SMPCNTL DD *
SET BDY(tcptgt). /* TCP/IP target zone */
LINK MODULE(DFSLI000)
FROMZONE(imszone) /* IMS target zone */
INTOLMOD(EZAIMSLN)
RC(LINK)=00.

EZAIMSPL JCLIN
//LINKIMS JOB (accounting,information),programmer.name,
// MSGLEVEL=(1,1),MSGCLASS=A,CLASS=A
//**
//* *
//* THIS JOB SERVES AS AN ALTERNATIVE TO THE CROSS ZONE LINK *
//* PERFORMED BY RUNNING EZAIMSCZ. *
//* *
//* UPDATE THE JOB, SYSLMOD AND RESLIB DD CARDS TO SUIT YOUR *
//* INSTALLATION . *
//* *
//**
//LNKIMS EXEC PGM=IEWL,PARM='XREF,LIST,REUS'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=tcpip.v3r1.SEZALINK,DISP=SHR

154 z/OS V1R2.0 CS: IP IMS Sockets Guide

//RESLIB DD DSN=ims.RESLIB,DISP=SHR
//SYSLIN DD *

ORDER CMCOPYR
INCLUDE RESLIB(DFSLI000)
INCLUDE SYSLMOD(EZAIMSLN)
ENTRY EZAIMSLN
MODE RMODE(24) AMODE(31)
NAME EZAIMSLN(R)

/*

Listener IMS Definitions
The following statements define the Listener as an IMS BMP application and the
PSB that it uses. Note that the name ALTPCB is required.

PSB Definition
ALTPCB PCB TYPE=TP,MODIFY=YES

PSBGEN PSBNAME=EZAIMSLN,IOASIZE=1000
SSASIZE=1000,LANG=ASSEM

TRANSACT MODE=SNGL

Application Definition
APPLCTN PSB=EZAIMSLN,PGMTYPE=BATCH

Sample Program Explicit-Mode
The following is an example of an explicit-mode client server program pair. The
client program name is EZAIMSC2; you can find it in hlq.SEZAINST(EZAIMSC2).
The server program name is EZASVAS2; its IMS trancode is DLSI102. You can find
the sample in hlq.SEZAINST(EZASVAS2).

Program Flow
The client begins execution and obtains the host name and port number from
startup parameters. It then issues SOCKET and CONNECT calls to establish
connectivity to the specified host and port. Upon successful completion of the
connect, the client sends the TRM, which tells the Listener to schedule the specified
transaction (DLSI102). The Listener schedules that transaction and places a TIM on
the IMS message queue. Finally, it issues a GIVESOCKET call and waits for the
server to take the socket.

When the requested server (EZASVAS2) begins execution, it issues a GU call to
obtain the TIM. Using addressibility information from the TIM, it issues INITAPI and
TAKESOCKET calls. The server then sends SERVER MSG #1 to the client.

When the client receives the message, it displays SERVER MSG #1 on stdout and
then sends END CLIENT MSG #2 to the server, and displays a success message on
stdout. It then blocks on another receive() until the server responds.

The server, upon receipt of a message with the characters END as the first 3
characters, sends SERVER MSG #2 back to the client and closes the socket.

When the client receives this message, it prints SERVER MSG #2 on stdout, closes the
socket, and ends.

Sample Explicit-Mode Client Program (C Language)

Chapter 8. IMS Listener Samples 155

.* Different than part at level OLDPROD OLDVER/OLDLVL.
/*
* Include Files.
*/
/* #define RESOLVE_VIA_LOOKUP */
#pragma runopts(NOSPIE NOSTAE)
#define lim 50
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>
/*
* Client Main.
*/
main(argc, argv)
int argc;
char **argv;
{

unsigned short port; /* port client will connect to */
char buf ??(lim??); /* sned receive buffers 0 -3 */
char buf1 ??(lim??);
char buf2 ??(lim??);
char buf3 ??(lim??);
struct hostent *hostnm; /* server host name information */
struct sockaddr_in server; /* server address */
int s; /* client socket */
/*
* Check Arguments Passed. Should be hostname and port.
*/
if (argc != 3)
{
/* fprintf(stderr, "Usage: %s hostname port\n", argvÝ0}); */

printf("Usage: %s hostname port\n", argv Ý0});
exit(1);

}
printf("Usage: %s hostname port\n", argv Ý0});

/*
* The host name is the first argument. Get the server address.
*/
hostnm = gethostbyname(argvÝ1});
if (hostnm == (struct hostent *) 0)
{
/* fprintf(stderr, "Gethostbyname failed\n"); */

printf("Gethostbyname failed\n");
exit(2);

}
/*
* The port is the second argument.
*/
port = (unsigned short) atoi(argvÝ2});
/*
* Put a message into the buffer.
*/
strcpy(buf,"2000*TRNREQ*DLSI102 ");
/*
* Put the server information into the server structure.
* The port must be put into network byte order.
*/

156 z/OS V1R2.0 CS: IP IMS Sockets Guide

server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);
/*
* Get a stream socket.
*/
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

tcperror("Socket()");
exit(3);

}
/*
* Connect to the server.
*/
if (connect(s, (struct sockaddr *)&.server, sizeof(server)) < 0)
{

tcperror("Connect()");
exit(4);

}
if (send(s, buf, sizeof(buf), 0) < 0)
{

tcperror("Send()");
exit(5);

}
printf("send one complete\n");
/*
* The server sends message #1. Receive it into buffer1
*/
if (recv(s, buf1, sizeof(buf1), 0) < 0)
{

tcperror("Recv()");
exit(6);

}
printf("receive one complete\n");
printf(buf1,"\n");
/* fprintf(stdout,buf1,"\n"); */
/*
* Put end message into the buffer.
*/
strcpy(buf2, "END CLIENT MESSAGE #2 ");
if (send(s, buf2, sizeof(buf2), 0) < 0)
{

tcperror("Send()");
exit(7);

}
printf("send two complete\n");
/*
* The server sends back message #2. Receive it into buffer 2.
*/
if (recv(s, buf3, sizeof(buf3), 0) < 0)
{

tcperror("Recv()");
exit(8);

}
printf("receive two complete\n");
/* fprintf(stdout,buf3,"\n"); */
printf(buf3,"\n");
/*
* Close the socket.
*/
close(s);

Chapter 8. IMS Listener Samples 157

printf("Client Ended Successfully\n");
exit(0);

}

Sample Explicit-Mode Server Program (Assembler Language)

EZASVAS2 CSECT ENTRY POINT
USING EZASVAS2,BASE ADDRESSABILITY
SAVE (14,12) SAVE DL/I REGS
LR BASE,15
ST R13,SAVEAREA+4 SAVE AREA CHAINING
LA R13,SAVEAREA NEW SAVE AREA
MVC PSBS(L'PSBS*3),0(1) SAVE PCB LIST

*
* REG 1 CONTAINS PTR TO PCB ADDR LIST
* REG 13 CONTAINS PTR TO DL/I SAVE AREA
* REG 14 CONTAINS PTR DL/I RETURN ADDRESS
* REG 15 CONTAINS PROGRAMS ENTRY POINT
*

L R2,0(R0,R1) LOAD ADDR OF I/O PCB
*

USING IOPCB,R2 ADDRESSABILITY
*

L R3,4(R0,R1) LOAD ADDR OF ALT PCB
*

USING ALTPCB1,R3 ADDRESSABILITY
*

L R4,8(R0,R1) LOAD ADDR OF ALT PCB
LA R4,0(R0,R4) REMOVE HIGH ORDER BIT

*
USING ALTPCB2,R4 ADDRESSABILITY

*
LA R5,IOAREAIN
LA R7,IOAREAOT POINT TO OUTPUT AREA FOR TCPIP

*
GUCALL DS 0H GET UNIQUE CALL

* Get Transaction-initiation message containing Sockets data *

CALL ASMTDLI,(GUFUNCT,(2),(5)),VL GET TIM
CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES
BE GOBACK RETURN TO IMS

* ELSE NEXT INSTR
CLC STATUS(L'STATUS),=CL2' ' IF BLANK OK
BNE ERRRTN SOME WRONG HERE

* ELSE NEXT INSTR
*

XR R6,R6 CLEAR REG
BAL R6,INITAPI GO INSERT SEGMENT
B GUCALL SET RETURN ADDRESS

*
*
INITAPI DS 0H
* Set up for INITAPI

MVC TCPNAME(L'TCPNAME),TIMTCPAS TCP Address space
MVC ASDNAME(L'ASDNAME),TIMSAS Server address space
MVC SUBTASK(L'SUBTASK),TIMSTD Server task id

* Set up for takeSOCKET
MVC NAME(L'NAME),TIMLAS Listener address space

158 z/OS V1R2.0 CS: IP IMS Sockets Guide

MVC TASK(L'TASK),TIMLTD Listener task id
MVC S(L'S),TIMSD Socket descriptor

*
XC ERRNO(L'ERRNO),ERRNO
XC RETCODE(L'RETCODE),RETCODE

* EX 0,*

* Issue INITAPI *

CALL EZASOKET,(INITFUNC,MAXSOC,APITYPE,IDENT,SUBTASK, X
MAXSNO,ERRNO,RETCODE),VL

L R9,RETCODE
LTR R9,R9
BNM TAKESOC

*
INITERR DC CL21'INITAPI COMMAND ERROR'
*
TAKESOC DS 0H

* Issue takeSOCKET *

CALL EZASOKET,(TAKEFUNC,S,CLIENT,ERRNO,RETCODE),VL
*

L R9,RETCODE
LTR R9,R9
BNM SENDTEXT

*
TAKERR DC CL16'TAKESOCKET ERROR'
*Set up to send "SERVER MSG #1"
SENDTEXT DS 0H
*

MVC S(L'S),RETCODE+2
XC BUF(LENG),BUF
MVC BUF(13),=CL13'SERVER MSG #1'

*Translate to ASCII, if necessary
* CALL EZACIC04,(BUF,LENGTH),VL

* Send "SERVER MSG #1" *

CALL EZASOKET,(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
VL

L R9,RETCODE
LTR R9,R9
BNM RECVTEXT

*
SENDERR1 DC CL16'SEND ERROR' Abend on error
RECVTEXT DS 0H

* Receive client message #2 *

CALL EZASOKET,(RECVFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
VL

* Translate to EBCDIC if necessary
* CALL EZACIC05,(BUF,LENGTH),VL
*

L R9,RETCODE
LTR R9,R9
BNM CHECKTXT

*
DC CL16'RECEIVE ERROR' Abend on error

*

Chapter 8. IMS Listener Samples 159

CHECKTXT DS 0H
*

CLC BUF(3),=CL3'END' Test for end of message
BNE RECVTEXT If not eom, read again

*
* Set up to send shutdown message
SENDEND DS 0H
*

XC BUF(LENG),BUF
MVC BUF(13),=CL13'SERVER MSG #2'

* Translate to ASCII if necessary
* CALL EZACIC04,(BUF,LENGTH),VL

* Send "SERVER MSG #2" to indicate shutdown *

CALL EZASOKET,(SENDFUNC,S,FLAGS,NBYTE,BUF,ERRNO,RETCODE), X
VL

L R9,RETCODE
LTR R9,R9
BNM SOCKCLOS

*
SENDERR2 DC CL16'SEND ERROR' Abend on error
*
SOCKCLOS DS 0H

* Close the socket *

CALL EZASOKET,(CLOSFUNC,S,ERRNO,RETCODE),VL
*

L R9,RETCODE
LTR R9,R9
BNM TERMAPI

*
CLOSERR DC CL16'CLOSE ERROR'
*
TERMAPI DS 0H

* Terminate the API *

CALL EZASOKET,(TERMFUNC),VL
*
PROCTCP DS 0H Talk to TCPIP Client
* AND ALTERNATE
* SUCESSFUL MSG

XR R9,R9 CLEAR REG
LA R9,OTLEN LOAD LENGTH
STH R9,OTLTH STORE LEN THERE
XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA
MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG
MVC OTLITDT(L'OTLITDT),DCDATE MOVE IN DATE
MVC OTLITIME(L'OTLITIME),DCTIME MOVE IN TIME
UNPK OTDATE,CDATE MAKE TIME &. DATE
OI OTDATE+7,X'F0' EBCDIC
UNPK OTTIME,CTIME
OI OTTIME+7,X'F0'
XR R9,R9 GET READY
L R9,INPUTMSN INPUT COUNT
CVD R9,DLBWORK INPUT COUNT
UNPK OTINPUTN,DLBWORK INPUT COUNT
OI OTINPUTN+7,X'F0' FIX SIGN
MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR

160 z/OS V1R2.0 CS: IP IMS Sockets Guide

MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL
*
*

CALL ASMTDLI,(ISRTFUNCT,(3),(7),,USER1),VL
*

XC IOAREAOT(L'IOAREAOT),IOAREAOT
BR R6

*
ERRRTN DS 0H SOME WRONG HERE
*

CALL DFS0AER,((2),BADCALL,IOAREAIN,ERROPT),VL
*
GOBACK DS 0H RETURN TO IMS
*

L R13,4(R13)
RETURN (14,12),RC=0 RELOAD DL/I REGS &. RETURN

*
DS 0D

PSBS DS 3F
SPACE 1

BASE EQU 12
RC EQU 15
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 1
*

DS 0F
SAVEAREA DC 18F'0'
*
GUFUNCT DC CL4'GU ' GET UNIQUE CALL
GNFUNCT DC CL4'GN ' GET NEXT
PURGFUNCT DC CL4'PURG' PURGE CALL
ISRTFUNCT DC CL4'ISRT' INSERT CALL
BADCALL DC CL8'BAD CALL' BAD LIT
ERROPT DC F'0' 1=nodump 0=dump
*
DCINMSG DC CL26' INPUT MESSAGE SUCESSFUL '
DCDATE DC CL6' DATE '
DCTIME DC CL6' TIME '
USER1 DC CL8'USER1 '
USER2 DC CL8'USER2 '
WTOR DC CL8'WTOR '
*
INITFUNC DC CL16'INITAPI'
TAKEFUNC DC CL16'TAKESOCKET'
SENDFUNC DC CL16'SEND'
RECVFUNC DC CL16'RECV'

Chapter 8. IMS Listener Samples 161

CLOSFUNC DC CL16'CLOSE'
TERMFUNC DC CL16'TERMAPI'
SELEFUNC DC CL16'SELECT'
*
WORKTCPIP DC CL27'TCPIP WORK DATA BEGINS HERE'
APITYPE DC AL2(2)
MAXSOC DC AL2(MAX)
MAX EQU 50
MAXSNO DS F'00'
*
IDENT DS 0CL16
TCPNAME DS CL8
ASDNAME DS CL8
*
CLIENT DS 0CL38
DOMAIN DC F'2'
NAME DS CL8
TASK DS CL8
RESERVED DS 20B'0'
*
SUBTASK DS CL8
ERRNO DS F
RETCODE DS F
FLAGS DC F'0'
NBYTE DC F'50'
BUF DS CL(LENG)
LENG EQU 50
LENGTH DC AL4(LENG)
TIMEOUT DS 0D
SECONDS DS F
MILLISEC DS F
RSNDMASK DS CL(MAX)
WSNDMASK DS CL(MAX)
ESNDMASK DS CL(MAX)
RRETMASK DS CL(MAX)
WRETMASK DS CL(MAX)
ERETMASK DS CL(MAX)
S DS H
*

DS 0D
DLBWORK DS D

DS 0F
IOAREAIN DS 0CL56 I/O AREA INPUT
TIMLEN DS H Length of trans init msg
TIMRSV DS H reserved set to zeros
TIMID DS CL8 LISTENER ID set to LISTNR
TIMLAS DS CL8 LISTENER addr space name
TIMLTD DS CL8 LISTENER taskid for takesocket
TIMSAS DS CL8 SERVER addr space name
TIMSTD DS CL8 SERVER TASK ID user in initapi
TIMSD DS H socket given in LISTENER used in
* tasksocket
TIMTCPAS DS CL8 TCPIP addr space name
TIMDT DS H Data type of client
* ASCII(0) or EBCDIC(1)

DS 0F
IOAREAOT DS 0CL119 I/O AREA OUTPUT
OTLTH DS BL2
OTRSV DS BL2
OTLTERM DS CL8
OTINPUTN DS CL8

162 z/OS V1R2.0 CS: IP IMS Sockets Guide

OTMSG DS CL25
OTLITDT DS CL6
OTDATE DS CL8
OTLITIME DS CL6
OTTIME DS CL8
OTFILL DS CL28
OTLEN EQU (*-IOAREAOT)
*
IOPCB DSECT I/O AREA
LTERMN DS CL8 LOGICAL TERMINAL NAME

DS CL2 RESERVED FOR IMS
STATUS DS CL2 STATUS CODE
CDATE DS PL4 CURRENT DATE YYDDD
CTIME DS PL4 CURRENT TIME HHMMSST
INPUTMSN DS BL4 SEQUENCE NUMBER
MSGOUTDN DS CL8 MESSAGE OUT DESC NAME
USERID DS CL8 USER ID OF SOURCE
*
ALTPCB1 DSECT ALTERNATE PCB
ALTERM1 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS
ALSTAT1 DS CL2 STATUS CODE
*
ALTPCB2 DSECT ALTERNATE PCB
ALTERM2 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS
ALSTAT2 DS CL2 STATUS CODE
*

END

Sample Program Implicit-Mode
The following is an example of an implicit-mode client server program pair. The
client program name is EZAIMSC1; you can find it in hlq.SEZAINST(EZAIMSC1).
The server program name is EZASVAS1; its IMS trancode is DLSI101. The sample
program is located in hlq.SEZAINST(EZASVAS1).

Program flow
The client begins execution and obtains the host name and port number from the
startup parameters. It then issues SOCKET and CONNECT calls to establish
connectivity to the specified host and port. Upon successful completion of the
CONNECT, the client sends the TRM, which tells the Listener to schedule the
specified transaction (DLSI101). Because implicit-mode protocol requires that all
input data segments be transmitted before the server application is scheduled, the
client follows the TRM with 2 segments of application data and an end-of-message
(EOM) segment. The Listener schedules DLSI101 and places a TIM on the IMS
message queue, followed by the 2 segments of application data. Finally, the
Listener issues a GIVESOCKET call and waits for the server to take the socket.

When the requested server (EZASVAS1) begins execution, it issues a GU call to
ASMADLI. Behind the scenes, the Assist module issues its own GU and retrieves
the TIM from the IMS message queue. Using addressability information from the
TIM, it issues INITAPI and takeSOCKET calls, which establish connectivity with the
client.

Once connectivity is established, the Assist module issues a GN to the IMS
message queue, which returns the first segment of application data sent by the
client. This data is returned to the server mainline. (Thus, to the server mainline, the

Chapter 8. IMS Listener Samples 163

first segment of application data is returned in response to its GU.) In the sample
program, the first segment of application data is the data record: THIS IS FIRST
TEXT MESSAGE SEND TO SERVER. This record is echoed back to the client by means of
an IMS ISRT call to ASMADLI. The IMS Assist module intercepts the ISRT and
issues a TCP/IP write() to echo the segment back to the client. The server mainline
then issues a GN ASMADLI (which the Assist module intercepts and executes
another GN ASMTDLI) to recieve the second segment of user data. This segment is
also echoed back to the client, using an IMS ISRT call, which the Assist module
intercepts and replaces with a TCP/IP write() to the client.

After the second client data segment, the message queue contains an EOM
segment, denoting the client’s end-of-message. When the server has echoed the
second input segment to the client, it issues another GN to ASMADLI. ASMADLI
receives an end-of-message indication from the message queue and passes a QD
status code back to the server mainline.

At this point, the server mainline has completed processing that message and
issues a GU to see whether another message has arrived for that trancode. This
GU triggers the Assist module to send a final CSMOKY message to the client,
indicating successful completion. It then issues another GU to the IMS message
queue to determine whether another message for that trancode has been queued. If
so, the server program repeats itself; if not, the server issues a GOBACK and ends.

Sample Implicit-Mode Client Program (C Language)

.*

.* Different than part at level OLDPROD OLDVER/OLDLVL.
/*
* Include Files.
*/
/* #define RESOLVE_VIA_LOOKUP */
#pragma runopts(NOSPIE NOSTAE)
#define lim 119
#include <manifest.h>
#include <bsdtypes.h>
#include <in.h>
#include <socket.h>
#include <netdb.h>
#include <stdio.h>
/*
* Client Main.
*/
main(argc, argv)
int argc;
char **argv;
{

unsigned short port; /* port client will connect to */
struct sktmsg

{
short msglen;
short msgrsv;
char msgtrn??(8??);
char msgdat??(lim??);

} msgbuff;
struct datmsg

{
short datlen;

164 z/OS V1R2.0 CS: IP IMS Sockets Guide

short datrsv;
char datdat??(lim??);

} datbuff;
char buf ??(lim??); /* send receive buffer */
struct hostent *hostnm; /* server host name information */
struct sockaddr_in server; /* server address */
int s; /* client socket */
int len; /* length for send */
/*
* Check Arguments Passed. Should be hostname and port.
*/
if (argc != 3)
{

printf("Invalid parameter count\n");
exit(1);

}
printf("Usage: %s program name\n",argv??(0??));
/*
* The host name is the first argument. Get the server address.
*/
printf("Usage: %s host name\n",argv??(1??));
hostnm = gethostbyname(argvÝ1});
if (hostnm == (struct hostent *) 0)
{

printf("Gethostbyname failed\n");
exit(2);

}
/*
* The port is the second argument.
*/
printf("Usage: %s port name\n",argv??(2??));
port = (unsigned short) atoi(argvÝ2});
/*
* Put the server information into the server structure.
* The port must be put into network byte order.
*/
server.sin_family = AF_INET;
server.sin_port = htons(port);
server.sin_addr.s_addr = *((unsigned long *)hostnm->h_addr);
/*
* Get a stream socket.
*/
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{

tcperror("Socket()");
exit(3);

}
/*
* Connect to the server.
*/
if (connect(s, (struct sockaddr *)&.server, sizeof(server)) < 0)
{

tcperror("Connect()");
exit(4);

}
/*
* Put a message into the buffer.
*/

msgbuff.msgdat??(0??)='\0';
msgbuff.msgrsv = 0;
msgbuff.msglen = 20;

Chapter 8. IMS Listener Samples 165

strncat(msgbuff.msgtrn,"*TRNREQ*",
lim-strlen(msgbuff.msgdat)-1);

strncat(msgbuff.msgdat,"DLSI101 ",
lim-strlen(msgbuff.msgdat)-1);

len=20;
if (send(s, (char *)&.msgbuff, len, 0) < 0)
{

tcperror("Send()");
exit(5);

}
printf("\n");
printf(msgbuff.msgdat);
printf("send one complete\n");
/*
* Put a text message into the buffer.
*/

datbuff.datdat??(0??)='\0';
datbuff.datlen = 46;
datbuff.datrsv = 0;
strncat(datbuff.datdat,"THIS IS FIRST TEXT MESSAGE SEND TO SERVER ",

lim-strlen(datbuff.datdat)-1);
len=46;
if (send(s, (char *)&.datbuff, len, 0) < 0)
{

tcperror("Send()");
exit(6);

}
printf("\n");
printf(datbuff.datdat);
printf("\n");
printf("send for first text message complete\n");
/*
* Put a text message into the buffer.
*/

datbuff.datdat??(0??)='\0';
datbuff.datlen = 47;
strncat(datbuff.datdat,"THIS IS 2ND TEXT MESSAGE SENDING TO SERVER",

lim-strlen(datbuff.datdat)-1);
len=47;
if (send(s, (char *)&.datbuff, len, 0) < 0)
{

tcperror("Send()");
exit(7);

}
printf("\n");
printf(datbuff.datdat);
printf("\n");
printf("send for 2nd test message complete\n");
/*
* Put a end message into the buffer.
*/

datbuff.datdat??(0??)='\0';
datbuff.datlen = 4;
strncpy(datbuff.datdat," ",lim);
len=4;
if (send(s, (char *)&.datbuff, len, 0) < 0)
{

tcperror("Send()");
exit(8);

}
printf("\n");

166 z/OS V1R2.0 CS: IP IMS Sockets Guide

printf(datbuff.datdat);
printf("\n");
printf("send for end message complete\n");
/*
* The server sends back the same message. Receive it into the
* buffer.
*/
strncpy(datbuff.datdat," ",lim);
if (recv(s,(char *)&.datbuff, lim, 0) < 0)
{

tcperror("Recv()");
exit(9);

}
printf("receive one text complete\n");
printf(datbuff.datdat);
printf("\n");
/*
* The server sends back the same message. Receive it into the
* buffer.
*/
strncpy(datbuff.datdat," ",lim);
if (recv(s,(char *)&.datbuff, lim, 0) < 0)
{

tcperror("Recv()");
exit(10);

}
printf("receive two text complete\n");
printf(datbuff.datdat);
printf("\n");
/*
* The server sends eof message. Receive it into the
* buffer.
*/
strncpy(datbuff.datdat," ",lim);
if (recv(s,(char *)&.datbuff, 4, 0) < 0)
{

tcperror("Recv()");
exit(11);

}
printf("receive eof complete\n");
printf("\n");
printf(datbuff.datdat);
printf("\n");
strncpy(datbuff.datdat," ",lim);
if (recv(s,(char *)&.datbuff, 12, 0) < 0)
{

tcperror("Recv()");
exit(12);

}
printf("receive CSMOKY complete\n");
printf("\n");
printf(datbuff.datdat);
printf("\n");
/*
* Close the socket.
*/
close(s);
printf("Client Ended Successfully\n");
exit(0);

}

Chapter 8. IMS Listener Samples 167

Sample Implicit-Mode Server Program (Assembler Language)

EZASVAS1 CSECT ENTRY POINT
USING EZASVAS1,BASE ADDRESSABILITY
SAVE (14,12) SAVE DL/I REGS
LR BASE,15
ST R13,SAVEAREA+4 SAVE AREA CHAINING
LA R13,SAVEAREA NEW SAVE AREA
MVC PSBS(L'PSBS*3),0(1) SAVE PCB LIST

*
* REG 1 CONTAINS PTR TO PCB ADDR LIST
* REG 13 CONTAINS PTR TO DL/I SAVE AREA
* REG 14 CONTAINS PTR DL/I RETURN ADDRESS
* REG 15 CONTAINS PROGRAMS ENTRY POINT
*

L R2,0(R0,R1) LOAD ADDR OF I/O PCB
*

USING IOPCB,R2 ADDRESSABILITY
*

L R3,4(R0,R1) LOAD ADDR OF ALT PCB
*

USING ALTPCB1,R3 ADDRESSABILITY
*

L R4,8(R0,R1) LOAD ADDR OF ALT PCB
LA R4,0(R0,R4) REMOVE HIGH ORDER BIT

*
USING ALTPCB2,R4 ADDRESSABILITY

*
LA R5,IOAREAIN
LA R7,IOAREAOT POINT TO OUTPUT AREA

*
GUCALL DS 0H GET UNIQUE CALL
*
*

CALL ASMADLI,(GUFUNCT,(2),(5)),VL
*

CLC STATUS(L'STATUS),=CL2'QC' IF NO MESSAGES
BE GOBACK RETURN TO IMS

* ELSE NEXT INSTR
CLC STATUS(L'STATUS),=CL2' ' IF BLANK OK
BNE ERRRTN SOME WRONG HERE

* ELSE NEXT INSTR
*

XR R6,R6 CLEAR REG
LA R6,GNCALL SET RETURN ADDRESS
BAL R6,ISRTCALL GO INSERT SEGMENT

*
GNCALL DS 0H GET NEXT CALL
*
*

CALL ASMADLI,(GNFUNCT,(2),(5)),VL
*

CLC STATUS(L'STATUS),=CL2'QD' IF NO MORE SEGMENTS
BE GUCALL RETURN TO IMS
CLC STATUS(L'STATUS),=CL2' ' IF NO MORE SEGMENTS
BNE ERRRTN SOME WRONG HERE

*
XR R6,R6 CLEAR REG
LA R6,GNLOOP SET RETURN ADDRESS

168 z/OS V1R2.0 CS: IP IMS Sockets Guide

BAL R6,ISRTCALL GO INSERT SEGMENT
*
GNLOOP B GNCALL
*
ISRTCALL DS 0H INSERT - WRITE TO TERMINAL
* AND ALTERNATE
* SUCESSFUL MSG

XR R9,R9 CLEAR REG
LA R9,OTLEN LOAD LENGTH
STH R9,OTLTH STORE LEN THERE
XC OTRSV(L'OTRSV),OTRSV CLEAR RESERVE DATA
MVC OTMSG(L'OTMSG),DCINMSG MOVE IN MSG
MVC OTLITDT(L'OTLITDT),DCDATE " " DATE
MVC OTLITIME(L'OTLITIME),DCTIME " " TIME
UNPK OTDATE,CDATE MAKE TIME &. DATE
OI OTDATE+7,X'F0' EBCDIC
UNPK OTTIME,CTIME
OI OTTIME+7,X'F0'
XR R9,R9 GET READY
L R9,INPUTMSN INPUT COUNT
CVD R9,DLBWORK INPUT COUNT
UNPK OTINPUTN,DLBWORK INPUT COUNT
OI OTINPUTN+7,X'F0' FIX SIGN
MVC OTFILL(L'OTFILL),=28X'40' FILL CHAR
MVC OTLTERM(L'OTLTERM),LTERMN ADD TERMINAL

*
* For LTERM USER1....
*

CALL ASMADLI,(ISRTFUNCT,(2),(7)),VL
*
* For LTERM USER2....
*

XC IOAREAOT(L'IOAREAOT),IOAREAOT
BR R6

*
ERRRTN DS 0H SOME WRONG HERE
*

CALL DFS0AER,((2),BADCALL,IOAREAIN,ERROPT),VL
*
GOBACK DS 0H RETURN TO IMS
*

L R13,4(R13)
RETURN (14,12),RC=0 RELOAD DL/I REGS &. RETURN

*
DS 0D

PSBS DS 3F
SPACE 1

BASE EQU 12
RC EQU 15
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11

Chapter 8. IMS Listener Samples 169

R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

SPACE 1
*

DS 0F
SAVEAREA DC 18F'0'
GUFUNCT DC CL4'GU ' GET UNIQUE CALL
GNFUNCT DC CL4'GN ' GET NEXT
PURGFUNCT DC CL4'PURG' PURGE CALL
ISRTFUNCT DC CL4'ISRT' INSERT CALL
BADCALL DC CL8'BAD CALL' BAD LIT
ERROPT DC F'1' 1=NODUMP 2=DUMP
DCINMSG DC CL26' INPUT MESSAGE SUCESSFUL '
DCDATE DC CL6' DATE '
DCTIME DC CL6' TIME '
USER1 DC CL8'USER1 '
USER2 DC CL8'USER2 '
WTOR DC CL8'WTOR '
*

DS 0D
DLBWORK DS D

DS 0F
IOAREAIN DS CL119 I/O AREA INPUT

DS 0F
IOAREAOT DS 0CL119 I/O AREA OUTPUT
OTLTH DS BL2
OTRSV DS BL2
OTLTERM DS CL8
OTINPUTN DS CL8
OTMSG DS CL25
OTLITDT DS CL6
OTDATE DS CL8
OTLITIME DS CL6
OTTIME DS CL8
OTFILL DS CL46
OTLEN EQU (*-IOAREAOT)
*
IOPCB DSECT I/O AREA
LTERMN DS CL8 LOGICAL TERMINAL NAME

DS CL2 RESERVED FOR IMS
STATUS DS CL2 STATUS CODE
CDATE DS PL4 CURRENT DATE YYDDD
CTIME DS PL4 CURRENT TIME HHMMSST
INPUTMSN DS BL4 SEQUENCE NUMBER
MSGOUTDN DS CL8 MESSAGE OUT DESC NAME
USERID DS CL8 USER ID OF SOURCE
*
ALTPCB1 DSECT ALTERNATE PCB
ALTERM1 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS
ALSTAT1 DS CL2 STATUS CODE
*
ALTPCB2 DSECT ALTERNATE PCB
ALTERM2 DS CL8 DESTINATION NAME

DS CL2 RESERVED FOR IMS
ALSTAT2 DS CL2 STATUS CODE
*
*

END

170 z/OS V1R2.0 CS: IP IMS Sockets Guide

Sample Program - IMS MPP Client
Most of the discussion in this book assumes that the IMS system is the server;
however, some applications require that the server be a TCP/IP host. The following
is an example of a program in which the client is an IMS MPP, and the server is a
TCP/IP host.

For simplicity, we have coded both client and server to execute on an MVS host.
The client (EZAIMSC3) is initated by a 3270-driven IMS MPP; the server
(EZASVAS3) is a TSO job which is already running when the client starts.

The samples are located in hlq.SEZAINST(EZAIMSC3) and
hlq.SEZAINST(EZASVAS3).

Program Flow
A TSO Submit command is used to start the server. Once started, it executes the
TCP/IP connection sequence for an iterative server (INITAPI, SOCKET, BIND,
LISTEN, SELECT, and ACCEPT) and then waits for the client to request
connection.

Note that the BIND call returns a socket descriptor which is then used to listen for a
connection request. The ACCEPT call also returns a socket descriptor, which is
used for the application data connection. Meanwhile, the original listener socket is
available to receive additional connection requests.

The client is started by calling an IMS transaction which, in turn, executes the
TCP/IP connection sequence for a client (INITAPI, SOCKET, and CONNECT).

Upon receiving the connection request from the client, the server issues a READ
and waits for the client to WRITE the initial message. The server contains a
READ/WRITE loop which echoes client transmissions until an ″END″ message is
received. When this message is received, it sets a ’last record’ switch, echoes the
end message to the client, and terminates.

Note that in order for the server to terminate, it must close two sockets: one -- the
socket on which it listens for connection requests; the other -- the socket on which
the data transfers took place.

The client and server both include Write To Operator macros, which allow you to
monitor progress through the application logic flow. At the end of this appendix you
will find a sample of the WTO output from the client and the server.

Sample Client Program for non-IMS server

EZAIMSC3 CSECT
EZAIMSC3 AMODE ANY
EZAIMSC3 RMODE ANY

GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF

GBLB &SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE
&SUBTR SETB 0 1=SUBTRACE ON 0=SUBTRACE OFF

* *
* MODULE NAME: EZAIMSC3 *
* *

Chapter 8. IMS Listener Samples 171

* MODULE FUNCTION: Sample program of an IMS MPP TCP client. This *
* module connects with a TCP/IP server and *
* exchanges msgs with it. The number of msgs *
* exchanged is determined by a constant and *
* the length of the messages is also determined *
* by a constant. *
* Note: If an error occurs during processing, this *
* module will send an error message to the system *
* console and then Abends0c1. *
* *
* LANGUAGE: Assembler *
* *
* ATTRIBUTES: Reusable *
* *
* INPUT: None *
* *

SOC0000 DS 0H

USING *,R15 Tell assembler to use reg 15
B SOC00100 Branch to startup address
DC CL16'IMSTCPCLEYECATCH'

BUFLEN EQU 1000 Set length of I/O buffers
R4BASE DC A(SOC0000+4096)

* Control Variables for this program *

SOCMSGN DC F'005' Number of messages to be exchanged
SOCMSGL DC F'200' Length of messages to be exchanged
SERVPORT DC H'5000' Port Address of Server
SOCTASK DC F'0' Task number for this client
SERVLEN DC H'0' Length of server's name
SERVNAME DC CL24' ' Internet name of server
SENDINT DC CL8'00000010' Delay interval between sends

* Constants used for call functions *

INITAPI DC CL16'INITAPI'
GETHSTID DC CL16'GETHOSTID'
SOCKET DC CL16'SOCKET'
GHBN DC CL16'GETHOSTBYNAME'
CONNECT DC CL16'CONNECT'
READ DC CL16'READ'
WRITE DC CL16'WRITE'
CLOSE DC CL16'CLOSE'
TERMAPI DC CL16'TERMAPI'

* Beginning of program execution statements *

SOC00100 DS 0H Beginning of program

STM R14,R12,12(R13) Save callers registers
LR R3,R15 Move base reg to R3
L R4,R4BASE Add R4 as second base reg
DROP R15 Tell assembler to drop R15 as base
USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X

base registers
LR R7,R13 Save address of previous save area
LA R12,SOCSTG Move address of program stg to R12
LA R13,SOCSTGL Move length of program stge to R13
SR R14,R14 Clear R14
SR R15,R15 Clear R15
MVCL R12,R14 Clear program storage

172 z/OS V1R2.0 CS: IP IMS Sockets Guide

LA R13,SOCSTG Move address of program stg to R13
USING SOCSTG,R13 Tell Assembler about storage
ST R7,SOCSAVEL Save address of lower save area
ST R13,8(R7) Complete save area chain

SOC00200 DS 0H
*
* Build message for console
*

MVC MSG1D,MSG1C Initialize first part of message
L R0,SOCTASK Get task number
CVD R0,DWORK Convert task number to decimal
UNPK MSGTD,DWORK+5(3) Convert decimal to character
OI MSGTD+4,X'F0' Clear sign
MVC MSG2D,MSG2CS Move 'Started' to message
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
MVC WTOLIST,WTOPROT Move prototype WTO to list form
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
*
* Issue INITAPI Call to connect to interface
*

MVC SOCTASKC(3),=CL3'SOC' Build Task Identifier
MVC SOCTASKC+3(5),MSGTD
MVC MSG2D,MSG2C1 Move 'INITAPI'to message
MVC MAXSOC,=H'50' Initialize MAXSOC field
MVC ASTCPNAM,=CL8'TCPV3 ' Initialize TCP Name
MVC ASCLNAME,=CL8'TCPCLINT' Initialize AS Name

*
CALL EZASOKET, X

(INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO, X
RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE01

* TRACE ENTRY FOR INITAPI TRACE TYPE = 1
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE01 ANOP
*
* Issue GETHOSTID Call to obtain internet address of host
*

MVC MSG2D,MSG2C8 Move 'GTHSTID'to message
*

CALL EZASOKET, Issue GETHOSTID Call X
(GETHSTID,SERVIADD), X
VL Specify Variable parameter list

*
AIF (NOT &TRACE).TRACE08

* TRACE ENTRY FOR GETHOSTID TRACE TYPE = 8
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE08 ANOP
*

Chapter 8. IMS Listener Samples 173

* Issue SOCKET Call to obtain a socket descriptor
*

MVC MSG2D,MSG2C2 Move 'SOCKET' to message
MVC AF,=F'2' Address Family = Internet
MVC SOCTYPE,=F'1' Type = Stream Sockets
XC PROTO,PROTO Clear protocol field

*
CALL EZASOKET, Issue SOCKET Call X

(SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE02

* TRACE ENTRY FOR SOCKET TRACE TYPE = 2
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE02 ANOP
*
* Get socket descriptor number
*

L R6,RETCODE Descriptor number returned
STH R6,SOCDESC Save it

*
* Issue CONNECT Command to Connect to Server
*

MVC SSOCAF,=H'2' Set AF=INET
MVC SSOCPORT,SERVPORT Move Port Number
MVC SSOCINET,SERVIADD Move Internet Address of Server
MVC MSG2D,MSG2C4 Move 'CONNECT' to message

*
CALL EZASOKET, Issue CONNECT Call X

(CONNECT,SOCDESC,SERVSOC,ERRNO,RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE04

* TRACE ENTRY FOR CONNECT TRACE TYPE = 4
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE04 ANOP
*
* Send initial message to server
*

MVC BUFFER(L'MSG1),MSG1 Move Message to Buffer
LA R6,L'MSG1 Get length of message
ST R6,DATALEN Put length in data field
MVC MSG2D,MSG2C5 Move 'WRITE' to message

*
CALL EZASOKET, Issue WRITE Call X

(WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X
VL

*
L R6,RETCODE Check for sucessful call

174 z/OS V1R2.0 CS: IP IMS Sockets Guide

C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE05

* TRACE ENTRY FOR WRITE TRACE TYPE = 5
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '
MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it
OI MSG4D+6,X'F0' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE05 ANOP
*
* Read response to initial message
*

MVC MSG2D,MSG2C6 Move 'READ' to message
LA R6,L'BUFFER Get length of buffer
ST R6,DATALEN Put length in data field

*
CALL EZASOKET, Issue READ Call X

(READ,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &.TRACE).TRACE06

* TRACE ENTRY FOR READ TRACE TYPE = 6
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '
MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it
OI MSG4D+6,X'F0' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE06 ANOP
*
* Send second message to server
*

MVC BUFFER(L'MSG2),MSG2 Move Message to Buffer
LA R6,L'MSG2 Get length of message
ST R6,DATALEN Put length in data field
MVC MSG2D,MSG2C5 Move 'WRITE' to message

*
CALL EZASOKET, Issue WRITE Call X

(WRITE,SOCDESC,DATALEN,BUFFER,ERRNO,RETCODE), X
VL

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE15

* TRACE ENTRY FOR WRITE TRACE TYPE = 5
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '

Chapter 8. IMS Listener Samples 175

MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it
OI MSG4D+6,X'F0' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE15 ANOP

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat

*
* Read response to second message
*

MVC MSG2D,MSG2C6 Move 'READ' to message
*

CALL EZASOKET, Issue READ Call X
(READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat

*
AIF (NOT &TRACE).TRACE16

* TRACE ENTRY FOR READ TRACE TYPE = 6
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '
MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it
OI MSG4D+6,X'F0' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE16 ANOP
*
* Send End message to server
*

MVC BUFFER(L'ENDMSG),ENDMSG Move end message to buffer
LA R6,L'ENDMSG Get length of message
ST R6,SOCMSGL Put length in length field
MVC MSG2D,MSG2C5 Move 'WRITE' to message

*
CALL EZASOKET, Issue WRITE Call X

(WRITE,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X
VL

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE25

* TRACE ENTRY FOR WRITE TRACE TYPE = 5
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '
MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it

176 z/OS V1R2.0 CS: IP IMS Sockets Guide

OI MSG4D+6,X'F0' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE25 ANOP
*
* Read response to end message
*

MVC MSG2D,MSG2C6 Move 'READ' to message
*

CALL EZASOKET, Issue READ Call X
(READ,SOCDESC,SOCMSGL,BUFFER,ERRNO,RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE26

* TRACE ENTRY FOR READ TRACE TYPE = 6
MVC MSGLEN,=AL2(MSGTL+18) Put length of text in msg hdr.
MVC MSG3D,ERR3C ' RETCODE= '
MVI MSG3S,C'+' Move sign
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK MSG4D,DWORK+4(4) Unpack it
OI MSG4D+6,X'F0' Correct the sign
LA R6,MSG Put text address in R6
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE26 ANOP
*
* Close socket
*

MVC MSG2D,MSG2C7 Move 'CLOSE' to message
*

CALL EZASOKET, Issue CLOSE Call X
(CLOSE,SOCDESC,ERRNO,RETCODE), X
VL Specify variable parameter list

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE07

* TRACE ENTRY FOR CLOSE TRACE TYPE = 7
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE07 ANOP
*
* Terminate Connection to API
*

CALL EZASOKET, Issue TERMAPI Call X
(TERMAPI), X
VL Specify variable parameter list

*
* Issue console message for task termination
*

MVC MSG2D,MSG2CE Move 'Ended' to message
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.

Chapter 8. IMS Listener Samples 177

WTO TEXT=(R6), Write message to operator X
MF=(E,WTOLIST)

*
* Return to Caller
*

L R13,SOCSAVEL
LM R14,R12,12(R13)
BR R14

*
* Write error message to operator and ABENDS0C1
*
SOCERR DS 0H Write error message to operator

MVC ERR1D,MSG1D 'IMSTCPCL, TASK #'
MVC ERRTD,MSGTD Move task number to message
MVC ERR2D,MSG2D Call Type
MVC ERR3D,ERR3C ' RETCODE= '
MVI ERR3S,C'-' Move sign which is always minus
MVC ERR5D,ERR5C ' ERRNO= '
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK ERR4D,DWORK+4(4) Unpack it
OI ERR4D+6,X'F0' Correct the sign
L R6,ERRNO Get errno value
CVD R6,DWORK Convert it to decimal
UNPK ERR6D,DWORK+4(4) Unpack it
OI ERR6D+6,X'F0' Correct the sign
LA R6,ERR Put text address in R6
MVC ERRLEN,=AL2(ERRTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
ABEND DS 0H

DC H'0' Force ABEND
WTOPROT WTO TEXT=, List form of WTO Macro X

MF=L
WTOPROTL EQU *-WTOPROT Length of WTO Prototype
MSG1C DC CL17'IMSTCPCL, TASK # '
MSG2CS DC CL8' STARTED'
MSG2CE DC CL8' ENDED '
ERR3C DC CL10' RETCODE= '
ERR5C DC CL8' ERRNO= '
MSG2C1 DC CL8' INITAPI'
MSG2C2 DC CL8' SOCKET '
MSG2C4 DC CL8' CONNECT'
MSG2C5 DC CL8' WRITE '
MSG2C6 DC CL8' READ '
MSG2C7 DC CL8' CLOSE '
MSG2C8 DC CL8' GTHSTID'
MSG2C35 DC CL8' SYNC '
MSG1 DC CL16'CLIENT MESSAGE 1' First msg to server
MSG2 DC CL16'CLIENT MESSAGE 2' 2nd msg to server
ENDMSG DS 0CL48 End Message for Server

DC CL3'END' End indicator for SRV1
DC CL45' ' Pad with blanks
DS 0D

SOCSTG DS 0F PROGRAM STORAGE
SOCSAVE DS 0F Save Area
SOCSAVE1 DS F Word for high-level languages
SOCSAVEL DS F Address of previous save area
SOCSAVEH DS F Address of next save area
SOCSAV14 DS F Reg 14
SOCSAV15 DS F Reg 15

178 z/OS V1R2.0 CS: IP IMS Sockets Guide

SOCSAV0 DS F Reg 0
SOCSAV1 DS F Reg 1
SOCSAV2 DS F Reg 2
SOCSAV3 DS F Reg 3
SOCSAV4 DS F Reg 4
SOCSAV5 DS F Reg 5
SOCSAV6 DS F Reg 6
SOCSAV7 DS F Reg 7
SOCSAV8 DS F Reg 8
SOCSAV9 DS F Reg 9
SOCSAV10 DS F Reg 10
SOCSAV11 DS F Reg 11
SOCSAV12 DS F Reg 12
SOCSAV13 DS F Reg 13
MAXSOC DS H Maximum number of sockets for this X

application
SOCTASKC DS CL8 Character task identifier
SOCDESC DS H Socket Descriptor Number
HISOC DS F Highest socket descriptor available
AF DS F Address family for socket call
SOCTYPE DS F Type of socket
NS DS F New socket number for socket call
SERVAL DS 12F Alias array for server
SERVSOC DS 0F Socket Address of Server
SSOCAF DS H Address Family of Server = 2
SSOCPORT DS H Port number for Server
SSOCINET DS F Internet address for Server

DC D'0' Reserved
MSG DS 0F Message area
MSGLEN DS H Length of message
MSG1D DS CL17 'IMSTCPCL, TASK #'
MSGTD DS CL5 Task Number
MSG2D DS CL8 Last part of message
MSGE EQU * End of message
MSGTL EQU MSGE-MSG1D Length of message text
MSG3D DS CL10 ' RETCODE = '
MSG3S DS C Sign which is always -
MSG4D DS CL7 Return code
ERR DS 0F Error message area
ERRLEN DS H Length of message
ERR1D DS CL17 'IMSTCPCL, TASK #'
ERRTD DS CL5 Task Number
ERR2D DS CL8 Last part of message
ERR3D DS CL10 ' RETCODE = '
ERR3S DS C Sign which is always -
ERR4D DS CL7 Return code
ERR5D DS CL8 ' ERRNO ='
ERR6D DS CL7 Error number
ERRE EQU * End of message
ERRTL EQU ERRE-ERR1D Length of message text
BUFFER DS CL(BUFLEN) Socket I/O Buffer
DATALEN DS F Length of buffer data
DWORK DS D Double word work area
RECNO DS PL4 Record Number
ERRNO DS F Error number returned from call
RETCODE DS F Return code from call
PROTO DS F Protocol field for socket
ASIDENT DS 0F Address space identifier for initapi
ASTCPNAM DS CL8 Name of TCP/IP Address Space
SERVIADD DS F Internet address for Server
ASCLNAME DS CL8 Our name as known to TCP/IP

Chapter 8. IMS Listener Samples 179

WTOLIST DS CL(WTOPROTL) List form of WTO Macro
SOCSTGE EQU * End of Program Storage
SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage

LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
GWABAR EQU 13

END

Sample Server Program for IMS MPP Client

EZASVAS3 CSECT
EZASVAS3 AMODE ANY
EZASVAS3 RMODE ANY

GBLB &TRACE ASSEMBLER VARIABLE TO CONTROL TRACE GENERATION
&TRACE SETB 1 1=TRACE ON 0=TRACE OFF

GBLB &SUBTR ASSEMBLER VARIABLE TO CONTROL SUBTRACE
&SUBTR SETB 0 1=SUBTRACE ON 0=SUBTRACE OFF

* *
* MODULE NAME: EZASVAS3 *
* *
* MODULE FUNCTION: Test module for Extended Sockets. This module *
* accepts connection request from IMS client *
* program named EZAIMSC3. *
* *
* LANGUAGE: Assembler *
* *
* ATTRIBUTES: Non-reusable *
* *
* *
* *

SOC0000 DS 0H

USING *,R15 Tell assembler to use reg 15
B SOC00100 Branch to startup address
DC CL14'SERVEREYECATCH'

ASIDENT DS 0F Address Space Identifier for initapi
ASTCPNAM DC CL8'TCPV3 ' Name of TCP/IP Address Space
ASCLNAME DC CL8'CALLSRVER' Our name as known to TCP/IP
TIMEOUT DS 0F Timeout value for select
TIMESEC DC F'180' Timeout value in seconds
TIMEMSEC DC F'0' Timeout value in milliseconds
BUFLEN EQU 1000 Set length of I/O buffers
R4BASE DC A(SOC0000+4096)

180 z/OS V1R2.0 CS: IP IMS Sockets Guide

SOC00100 DS 0H Beginning of program
STM R14,R12,12(R13) Save callers registers
LR R3,R15 Move base reg to R3
L R4,R4BASE Add R4 as second base reg
DROP R15 Tell assembler to drop R15 as base
USING SOC0000,R3,R4 Tell assembler to use R3 and R4 as X

base registers
LA R6,SOCSTG Clear program storage
LA R7,SOCSTGL
SR R14,R14
SR R15,R15
MVCL R6,R14
ST R13,SOCSAVEH Save address of higher save area
LA R7,SOCSAVE Complete save area chain
ST R7,8(R13) Tell caller where our save area is
LA R13,SOCSAVE Point R13 at our save area
MVI ENDSW,X'00' Clear end-of-transmission switch

*
* Build message for console
*

MVC MSG1D,MSG1C Initialize first part of message
MVC MSGTD,=CL5'00000' Move subtask number from clientid
MVC MSG2D,MSG2CS Move 'Started' to message
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
MVC WTOLIST,WTOPROT Move prototype WTO to list form
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
*
* Issue INITAPI Call to connect to interface
*

MVC SOCTASKC,=CL8'TAS00000' Give subtask a name
MVC MSG2D,MSG2C00 Move 'INITAPI'to message
MVC MAXSOC,=H'50' Initialize MAXSOC parameter

*
CALL EZASOKET, X

(INITAPI,MAXSOC,ASIDENT,SOCTASKC,HISOC,ERRNO, X
RETCODE), X
VL

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE00

* TRACE ENTRY FOR INITAPI TRACE TYPE = 0
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE00 ANOP
*
* Issue SOCKET Call to obtain socket to listen on
*

MVC MSG2D,MSG2C25 Move 'SOCKET'to message
MVC AF,=F'2' Initialize AF to '2' (INET)
MVC SOCTYPE,=F'1' Specify stream sockets
MVC PROTO,=F'0' Protocol is ignored for stream

*
CALL EZASOKET, Issue SOCKET CALL X

(SOCKET,AF,SOCTYPE,PROTO,ERRNO,RETCODE), X
VL

Chapter 8. IMS Listener Samples 181

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminate
AIF (NOT &TRACE).TRACE25

* TRACE ENTRY FOR SOCKET TRACE TYPE = 25
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE25 ANOP

L R0,RETCODE Get descriptor number of socket
STH R0,LISTSOC Save it

*
* Issue GETHOSTID call to determine our internet address
*

MVC MSG2D,MSG2C07 Move 'GETHSTID'to message
*

CALL EZASOKET, Issue GETHOSTID Call X
(GETHSTID,RETCODE),VL

*
AIF (NOT &TRACE).TRACE07

* TRACE ENTRY FOR SOCKET TRACE TYPE = 07
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE07 ANOP

L R0,RETCODE Get internet address of host
ST R0,SINETADR Save it

*
* Issue BIND call to establish port
*

MVC MSG2D,MSG2C02 Move 'BIND' to message
MVC SPORT,=H'5000' Move port number to structure
MVC SAF,=H'2' Move AF (INET) to structure

*
CALL EZASOKET, Issue BIND Call X

(BIND,LISTSOC,SOCKNAME,ERRNO,RETCODE), X
VL

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat

*
AIF (NOT &TRACE).TRACE02

* TRACE ENTRY FOR BIND TRACE TYPE = 02
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE02 ANOP
*
*
* Issue LISTEN call to establish backlog of connection requests
*

MVC MSG2D,MSG2C13 Move 'LISTEN' to message
MVC BACKLOG,=F'5' Set backlog to 5

*
CALL EZASOKET, Issue LISTEN Call X

(LISTEN,LISTSOC,BACKLOG,ERRNO,RETCODE),VL
L R6,RETCODE Check for sucessful call

182 z/OS V1R2.0 CS: IP IMS Sockets Guide

C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminate

*
AIF (NOT &TRACE).TRACE13

* TRACE ENTRY FOR LISTEN TRACE TYPE = 13
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE13 ANOP
*
* Issue SELECT call to wait on connection request
*

MVC MSG2D,MSG2C19 Move 'SELECT' to message
MVC SELSOC,=F'31' Maximum number of sockets
MVC WSNDMASK,=F'0' Not checking for writes
MVC ESNDMASK,=F'0' Not checking for exceptions
LA R0,1 Put 1 in rightmost position of R0
LH R1,LISTSOC Put listener socket number in R1
SLL R0,0(R1) Create mask for read
ST R0,RSNDMASK Put value in mask field

*
CALL EZASOKET, Issue SELECT Call X

(SELECT,SELSOC,TIMEOUT,RSNDMASK,WSNDMASK,ESNDMASK, X
RRETMASK,WRETMASK,ERETMASK,ERRNO,RETCODE), X
VL

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat

*
AIF (NOT &TRACE).TRACE19

* TRACE ENTRY FOR SELECT TRACE TYPE = 19
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE19 ANOP
*
* Issue ACCEPT call to accept a new connection
*

MVC MSG2D,MSG2C01 Move 'ACCEPT' to message
MVC NS,=F'4' Use socket 4 for connection socket

*
CALL EZASOKET, Issue ACCEPT Call X

(ACCEPT,LISTSOC,SOCKNAME,ERRNO,RETCODE), X
VL

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat

*
AIF (NOT &TRACE).TRACE01

* TRACE ENTRY FOR ACCEPT TRACE TYPE = 01
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE01 ANOP

L R0,RETCODE Get descriptor number of new socket
STH R0,CONNSOC Save it for future use

*
* Issue READ call to get first message from client

Chapter 8. IMS Listener Samples 183

*
LA R6,L'BUFFER Get length of buffer
ST R6,DATALEN Put length in data field
MVC MSG2D,MSG2C14 Move 'READ' to message
XC FLAGS,FLAGS Clear the FLAGS field

*
CALL EZASOKET, Issue READ Call X

(READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat

*
AIF (NOT &TRACE).TRAC14A

* TRACE ENTRY FOR READ TRACE TYPE = 14
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRAC14A ANOP
*
* Send Initial Message to client to continue transaction
*

MVC BUFFER(L'RESPMSG),RESPMSG Move Message to Buffer
LA R6,L'RESPMSG Get length of message
ST R6,DATALEN Put length in data field
XC FLAGS,FLAGS Clear FLAGS field
MVC MSG2D,MSG2C26 Move 'WRITE' to message

*
CALL EZASOKET, Issue WRITE call X

(WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
*

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRAC26A

* TRACE ENTRY FOR WRITE TRACE TYPE = 22
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRAC26A ANOP
SOC0300 DS 0H
*
* Read Message from Client
*

MVC MSG2D,MSG2C14 Move 'READ' to message
LA R0,L'BUFFER Get length of buffer
ST R0,DATALEN Use it for data length
XC FLAGS,FLAGS Clear FLAGS field

*
CALL EZASOKET, X

(READ,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
*

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BNH SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRAC14B

* TRACE ENTRY FOR RECV TRACE TYPE = 14
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

184 z/OS V1R2.0 CS: IP IMS Sockets Guide

MF=(E,WTOLIST)
.TRAC14B ANOP

CLC BUFFER(3),=CL3'END' Was this last record
BNE SOC0350 No
MVI ENDSW,C'E' Yes, set end-of-transmission switch

SOC0350 DS 0H
*
* Send Response to Client
*

MVC MSG2D,MSG2C26 Move 'WRITE' to message
MVC DATALEN,RETCODE Get message length from previous call
XC FLAGS,FLAGS Clear FLAGS field

*
CALL EZASOKET, X

(WRITE,CONNSOC,DATALEN,BUFFER,ERRNO,RETCODE),VL
*

L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BNH SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRAC26B

* TRACE ENTRY FOR SEND TRACE TYPE = 26
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRAC26B ANOP
*

CLI ENDSW,C'E' Have we received last record
BNE SOC0300 No, so go back and do another

*
* Close sockets
*

MVC MSG2D,MSG2C03 Move 'CLOSE1' to message
*

CALL EZASOKET, Issue CLOSE call for connection skt X
(CLOSE,CONNSOC,ERRNO,RETCODE),VL

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRACE03

* TRACE ENTRY FOR CLOSE TRACE TYPE = 3
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
.TRACE03 ANOP
*

MVC MSG2D,MSG2C03A Move 'CLOSE2' to message
*

CALL EZASOKET, Issue CLOSE call for listen socket X
(CLOSE,LISTSOC,ERRNO,RETCODE),VL

*
L R6,RETCODE Check for sucessful call
C R6,=F'0' Is it less than zero
BL SOCERR Yes, go display error and terminat
AIF (NOT &TRACE).TRAC103

* TRACE ENTRY FOR CLOSE TRACE TYPE = 3
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

Chapter 8. IMS Listener Samples 185

MF=(E,WTOLIST)
.TRAC103 ANOP
*
* Terminate Connection to API
*

CALL EZASOKET, X
(TERMAPI),VL

*
* Issue console message for task termination
*

MVC MSG2D,MSG2CE Move 'Ended' to message
LA R6,MSG Put text address in R6
MVC MSGLEN,=AL2(MSGTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
*
* Return to Caller
*

L R13,SOCSAVEH
LM R14,R12,12(R13)
BR R14

*
* Write error message to operator
*
SOCERR DS 0H Write error message to operator

MVC ERR1D,MSG1D 'SERVER, TASK #'
MVC ERRTD,MSGTD Move task number to message
MVC ERR2D,MSG2D Call Type
MVC ERR3D,ERR3C ' RETCODE= '
MVI ERR3S,C'-' Move sign which is always minus
MVC ERR5D,ERR5C ' ERRNO= '
L R6,RETCODE Get return code value
CVD R6,DWORK Convert it to decimal
UNPK ERR4D,DWORK+4(4) Unpack it
OI ERR4D+6,X'F0' Correct the sign
L R6,ERRNO Get errno value
CVD R6,DWORK Convert it to decimal
UNPK ERR6D,DWORK+4(4) Unpack it
OI ERR6D+6,X'F0' Correct the sign
LA R6,ERR Put text address in R6
MVC ERRLEN,=AL2(ERRTL) Put length of text in msg hdr.
WTO TEXT=(R6), Write message to operator X

MF=(E,WTOLIST)
*
* Return to Caller
*
* L R13,SOCSAVEH
* LM R14,R12,12(R13)
* BR R14
ABEND DS 0H

DC H'0' Force ABEND

* Constants *

WTOPROT WTO TEXT=, List form of WTO Macro X

MF=L
WTOPROTL EQU *-WTOPROT Length of WTO Prototype
MSG1C DC CL17'SERVER, TASK # '
MSG2CS DC CL8' STARTED'
MSG2CE DC CL8' ENDED '
ERR3C DC CL10' RETCODE= '

186 z/OS V1R2.0 CS: IP IMS Sockets Guide

ERR5C DC CL8' ERRNO= '
MSG2C00 DC CL8' INITAPI'
MSG2C01 DC CL8' ACCEPT '
MSG2C02 DC CL8' BIND '
MSG2C03 DC CL8' CLOSE '
MSG2C03A DC CL8' CLOSE2 '
MSG2C07 DC CL8' GTHSTID'
MSG2C13 DC CL8' LISTEN '
MSG2C14 DC CL8' READ '
MSG2C19 DC CL8' SELECT '
MSG2C25 DC CL8' SOCKET '
MSG2C26 DC CL8' WRITE '
MSG2C32 DC CL8' TAKESKT'
RESPMSG DC CL50'FIRST RESPONSE FROM SERVER '

* Constants used for call types *

INITAPI DC CL16'INITAPI'
BIND DC CL16'BIND'
LISTEN DC CL16'LISTEN'
ACCEPT DC CL16'ACCEPT'
READ DC CL16'READ'
SELECT DC CL16'SELECT'
WRITE DC CL16'WRITE'
SOCKET DC CL16'SOCKET'
CLOSE DC CL16'CLOSE'
GETHSTID DC CL16'GETHOSTID'
TERMAPI DC CL16'TERMAPI'

* Program Storage Area *

SOCSTG DS 0F PROGRAM STORAGE
SOCSAVE DS 0F Save Area
SOCSAVE1 DS F Word for high-level languages
SOCSAVEH DS F Address of previous save area
SOCSAVEL DS F Address of next save area
SOCSAV14 DS F Reg 14
SOCSAV15 DS F Reg 15
SOCSAV0 DS F Reg 0
SOCSAV1 DS F Reg 1
SOCSAV2 DS F Reg 2
SOCSAV3 DS F Reg 3
SOCSAV4 DS F Reg 4
SOCSAV5 DS F Reg 5
SOCSAV6 DS F Reg 6
SOCSAV7 DS F Reg 7
SOCSAV8 DS F Reg 8
SOCSAV9 DS F Reg 9
SOCSAV10 DS F Reg 10
SOCSAV11 DS F Reg 11
SOCSAV12 DS F Reg 12
SOCSAV13 DS F Reg 13
PARMADDR DS F Address of parameter list
GWAADDR DS F Address of Global Work Area
TIEADDR DS F Address of Task Information Element
LISTSOC DS H Socket number used for listen
CONNSOC DS H Socket number created by accept
SOCMSGN DS F Number of messages to be exchanged
SOCMSGL DS F Length of messages to be exchanged
SOCTASKC DS CL8 Character task identifier
HISOC DS F Highest socket descriptor available

Chapter 8. IMS Listener Samples 187

SERVLEN DS H
SERVSOC DS 0F Socket Address of Server
SERVAF DS H Address Family of Server = 2
SERVPORT DS H Port Address of Server
SERVIADD DS F Internet Address of Server
ENDSW DS C End of transmission switch
MSG DS 0F Message area
MSGLEN DS H Length of message
MSG1D DS CL17 'SERVER, TASK #'
MSGTD DS CL5 Task Number
MSG2D DS CL8 Last part of message
MSGE EQU * End of message
MSGTL EQU MSGE-MSG1D Length of message text
ERR DS 0F Error message area
ERRLEN DS H Length of message
ERR1D DS CL17 'SERVER, TASK #'
ERRTD DS CL5 Task Number
ERR2D DS CL8 Last part of message
ERR3D DS CL10 ' RETCODE = '
ERR3S DS C Sign which is always -
ERR4D DS CL7 Return code
ERR5D DS CL8 ' ERRNO ='
ERR6D DS CL7 Error number
ERRE EQU * End of message
ERRTL EQU ERRE-ERR1D Length of message text

* Name structure used by bind *

SOCKNAME DS 0F Socket Name structure
SAF DS H The address family of the socket
SPORT DS H The port number of this socket
SINETADR DS F The internet address of this socket

DS D Reserved
SOCKNAML EQU *-SOCKNAME Length of SOCKNAME Structure
CLIENTID DS 0F Client Id structure
CDOMAIN DS F The domain of this client (2)
CNAME DS CL8 The major name of this client
CSUBTASK DS CL8 The minor (subtask) name of this X

client
DS D Reserved

CLIENTL EQU *-CLIENTID
BUFFER DS CL(BUFLEN) Socket I/O Buffer
DATALEN DS F Length of buffer data
DWORK DS D Double word work area
SENDINT DS D Time interval for send
RECNO DS PL4 Record Number
AF DS F Address family for socket call
NS DS F New socket number for socket call
SOCTYPE DS F Socket type for socket call
PROTO DS F Protocol for socket call
ERRNO DS F Error number returned from call
RETCODE DS F Return code from call
CINADDR DS F Internet address of client
CPORT DS F Port number of client
MAXSOC DS H Maximum # sockets for INITAPI
SELSOC DS F Maximum # sockets for SELECT
BACKLOG DS F Backlog value for LISTEN
FLAGS DS F FLAGS field for RECV and RECVFROM
RSNDMASK DS F Read send mask for select
WSNDMASK DS F Write send mask for select
ESNDMASK DS F Exception send mask for select

188 z/OS V1R2.0 CS: IP IMS Sockets Guide

RRETMASK DS F Read return mask for select
WRETMASK DS F Write return mask for select
ERETMASK DS F Exception return mask for select
WTOLIST DS CL(WTOPROTL) List form of WTO Macro
EZASMTI EZASMI TYPE=TASK, X

STORAGE=CSECT Generate task storage for interface
EZASMGW EZASMI TYPE=GLOBAL, Storage definition for GWA X

STORAGE=CSECT
SOCSTGE EQU * End of Program Storage
SOCSTGL EQU SOCSTGE-SOCSTG Length of Program Storage

LTORG
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
GWABAR EQU 13

END

WTO output from sample program
Client Output
13.29.18 JOB00084 IEF403I SOCCALLS - STARTED - TIME=13.29.18
13.29.18 JOB00084 +SERVER, TASK # 00000 STARTED
13.29.19 JOB00084 +SERVER, TASK # 00000 INITAPI
13.29.19 JOB00084 +SERVER, TASK # 00000 SOCKET
13.29.19 JOB00084 +SERVER, TASK # 00000 GTHSTID
13.29.19 JOB00084 +SERVER, TASK # 00000 BIND
13.29.20 JOB00084 +SERVER, TASK # 00000 LISTEN
13.29.41 JOB00084 +SERVER, TASK # 00000 SELECT
13.29.41 JOB00084 +SERVER, TASK # 00000 ACCEPT
13.29.41 JOB00084 +SERVER, TASK # 00000 READ
13.29.41 JOB00084 +SERVER, TASK # 00000 WRITE
13.29.41 JOB00084 +SERVER, TASK # 00000 READ
13.29.41 JOB00084 +SERVER, TASK # 00000 WRITE
13.29.41 JOB00084 +SERVER, TASK # 00000 READ
13.29.42 JOB00084 +SERVER, TASK # 00000 WRITE
13.29.42 JOB00084 +SERVER, TASK # 00000 CLOSE
13.29.42 JOB00084 +SERVER, TASK # 00000 CLOSE2
13.29.42 JOB00084 +SERVER, TASK # 00000 ENDED

Server Output
13.27.45 JOB00082 IEF403I MESSAGE - STARTED - TIME=13.27.45
13.29.40 JOB00082 +IMSTCPCL, TASK # 00000 STARTED
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 INITAPI
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 GTHSTID
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 SOCKET
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 CONNECT
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 WRITE RETCODE= +0000016
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 READ RETCODE= +0000050
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 WRITE RETCODE= +0000016
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 READ RETCODE= +0000016
13.29.41 JOB00082 +IMSTCPCL, TASK # 00000 WRITE RETCODE= +0000048

Chapter 8. IMS Listener Samples 189

13.29.42 JOB00082 +IMSTCPCL, TASK # 00000 READ RETCODE= +0000048
13.29.42 JOB00082 +IMSTCPCL, TASK # 00000 CLOSE
13.29.42 JOB00082 +IMSTCPCL, TASK # 00000 ENDED

190 z/OS V1R2.0 CS: IP IMS Sockets Guide

Part 3. Appendixes

© Copyright IBM Corp. 1994, 2001 191

192 z/OS V1R2.0 CS: IP IMS Sockets Guide

Appendix A. Return Codes

This appendix covers the following return codes and error messages

v Error numbers from MVS TCP/IP

v Error codes from the Sockets Extended interface

Sockets Extended ERRNOs
This section contains the error condition codes that are returned in the ERRNO field
by the API when using the macro or SOCKET interface.

Note: The return codes 10119 through 10130 return the IPUSER variable.

Table 4. Sockets Extended ERRNOs

Error
Code Problem Description System Action Programmer’s Response

10100 An ESTAE macro did not
complete normally.

End the call. Call your MVS system programmer.

10101 A STORAGE OBTAIN failed. End the call. Increase MVS storage in the application’s
address space.

10108 The first call from TCP/IP was not
INITAPI or TAKESOCKET.

End the call. Change the first TCP/IP call to INITAPI or
TAKESOCKET.

10110 LOAD of EZBSOH03 (alias
EZASOH03) failed.

End the call. Call the IBM Software Support Center.

10154 Errors were found in the
parameter list for an IOCTL call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10155 The length parameter for an
IOCTL call is less than or equal to
zero.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10156 The length parameter for an
IOCTL call is 3200 (32 x 100).

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the IOCTL call. You might have
incorrect sequencing of socket calls.

10159 A zero or negative data length
was specified for a READ or
READV call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length in the READ call.

10161 The REQARG parameter in the
IOCTL parameter list is zero.

End the call. Correct the program.

10163 A 0 or negative data length was
found for a RECV, RECVFROM,
or RECVMSG call.

Disable the subtask
for interrupts. Sever
the DLC path. Return
an error code to the
caller.

Correct the data length.

10167 The descriptor set size for a
SELECT or SELECTEX call is
less than or equal to zero.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the SELECT or SELECTEX call. You
might have incorrect sequencing of socket
calls.

© Copyright IBM Corp. 1994, 2001 193

Table 4. Sockets Extended ERRNOs (continued)

Error
Code Problem Description System Action Programmer’s Response

10168 The descriptor set size in bytes
for a SELECT or SELECTEX call
is greater than 252. A number
greater than the maximum
number of allowed sockets (2000
is maximum) has been specified.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the descriptor set size.

10170 A zero or negative data length
was found for a SEND or
SENDMSG call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SEND call.

10174 A zero or negative data length
was found for a SENDTO call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the SENDTO call.

10178 The SETSOCKOPT option length
is less than the minimum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10179 The SETSOCKOPT option length
is greater than the maximum
length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the OPTLEN parameter.

10184 A data length of zero was
specified for a WRITE call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10186 A negative data length was
specified for a WRITE or WRITEV
call.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the data length in the WRITE call.

10190 The GETHOSTNAME option
length is less than 24 or greater
than the maximum length.

Disable the subtask
for interrupts. Return
an error code to the
caller.

Correct the length parameter.

10193 The GETSOCKOPT option length
is less than the minimum or
greater than the maximum length.

End the call. Correct the length parameter.

10197 The application issued an INITAPI
call after the connection was
already established.

Bypass the call. Correct the logic that produces the INITAPI
call that is not valid.

10198 The maximum number of sockets
specified for an INITAPI exceeds
2000.

Return to the user. Correct the INITAPI call.

10200 The first call issued was not a
valid first call.

End the call. For a list of valid first calls, refer to the
section on special considerations in the
chapter on general programming .

10202 The RETARG parameter in the
IOCTL call is zero.

End the call. Correct the parameter list. You might have
incorrect sequencing of socket calls.

10203 The requested socket number is a
negative value.

End the call. Correct the requested socket number.

194 z/OS V1R2.0 CS: IP IMS Sockets Guide

Table 4. Sockets Extended ERRNOs (continued)

Error
Code Problem Description System Action Programmer’s Response

10205 The requested socket number is a
duplicate.

End the call. Correct the requested socket number.

10208 The NAMELEN parameter for a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAMELEN parameter. You might
have incorrect sequencing of socket calls.

10209 The NAME parameter on a
GETHOSTBYNAME call was not
specified.

End the call. Correct the NAME parameter. You might
have incorrect sequencing of socket calls.

10210 The HOSTENT parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call was not
specified.

End the call. Correct the HOSTENT parameter. You might
have incorrect sequencing of socket calls.

10211 The HOSTADDR parameter on a
GETHOSTBYNAME or
GETHOSTBYADDR call is
incorrect.

End the call. Correct the HOSTADDR parameter. You
might have incorrect sequencing of socket
calls.

10212 The resolver program failed to
load correctly for a
GETHOSTBYNAME or
GETHOSTBYADDR call.

End the call. Check the JOBLIB, STEPLIB, and linklib
datasets and rerun the program.

10213 Not enough storage is available to
allocate the HOSTENT structure.

End the call. Increase the user storage allocation for this
job.

10214 The HOSTENT structure was not
returned by the resolver program.

End the call. Ensure that the domain name server is
available. This can be a nonerror condition
indicating that the name or address specified
in a GETHOSTBYADDR or
GETHOSTBYNAME call could not be
matched.

10215 The APITYPE parameter on an
INITAPI call instruction was not 2
or 3.

End the call. Correct the APITYPE parameter.

10218 The application programming
interface (API) cannot locate the
specified TCP/IP.

End the call. Ensure that an API that supports the
performance improvements related to CPU
conservation is installed on the system and
verify that a valid TCP/IP name was specified
on the INITAPI call. This error call might also
mean that EZASOKIN could not be loaded.

10219 The NS parameter is greater than
the maximum socket for this
connection.

End the call. Correct the NS parameter on the ACCEPT,
SOCKET or TAKESOCKET call.

10221 The AF parameter of a SOCKET
call is not AF_INET.

End the call. Set the AF parameter equal to AF_INET.

10222 The SOCTYPE parameter of a
SOCKET call must be stream,
datagram, or raw (1, 2, or 3).

End the call. Correct the SOCTYPE parameter.

10223 No ASYNC parameter specified
for INITAPI with APITYPE=3 call.

End the call. Add the ASYNC parameter to the INITAPI
call.

Appendix A. Return Codes 195

Table 4. Sockets Extended ERRNOs (continued)

Error
Code Problem Description System Action Programmer’s Response

10224 The IOVCNT parameter is less
than or equal to zero, for a
READV, RECVMSG, SENDMSG,
or WRITEV call.

End the call. Correct the IOVCNT parameter.

10225 The IOVCNT parameter is greater
than 120, for a READV,
RECVMSG, SENDMSG, or
WRITEV call.

End the call. Correct the IOVCNT parameter.

10226 Invalid COMMAND parameter
specified for a GETIBMOPT call.

End the call. Correct the COMMAND parameter of the
GETIBMOPT call.

10229 A call was issued on an
APITYPE=3 connection without
an ECB or REQAREA parameter.

End the call. Add an ECB or REQAREA parameter to the
call.

10300 Termination is in progress for
either the CICS transaction or the
sockets interface.

End the call. None.

10330 A SELECT call was issued
without a MAXSOC value and a
TIMEOUT parameter.

End the call. Correct the call by adding a TIMEOUT
parameter.

10331 A call that is not valid was issued
while in SRB mode.

End the call. Get out of SRB mode and reissue the call.

10332 A SELECT call is invoked with a
MAXSOC value greater than that
which was returned in the INITAPI
function (MAXSNO field).

End the call. Correct the MAXSOC parameter and reissue
the call.

10999 An abend has occurred in the
subtask.

Write message
EZY1282E to the
system console. End
the subtask and post
the TRUE ECB.

If the call is correct, call your system
programmer.

20000 An unknown function code was
found in the call.

End the call. Correct the SOC-FUNCTION parameter.

20001 The call passed an incorrect
number of parameters

End the call Correct the parameter list.

20002 The CICS Sockets Interface is not
in operation.

End the call Start the CICS Sockets Interface before
executing this call.

196 z/OS V1R2.0 CS: IP IMS Sockets Guide

Appendix B. How to Read a Syntax Diagram

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and Punctuation
The following symbols are used in syntax diagrams:

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command syntax.

�� Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Parameters
The following types of parameters are used in syntax diagrams:
Required

Required parameters are displayed on the main path.
Optional

Optional parameters are displayed below the main path.
Default

Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. Keywords are displayed in
uppercase letters and can be entered in uppercase or lowercase. For example, a
command name is a keyword.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax Examples
In the following example, the USER command is a keyword. The required variable
parameter is user_id, and the optional variable parameter is password. Replace the
variable parameters with your own values.

BB USER user_id
password

BC

Longer than one line: If a diagram is longer than one line, the first line ends with a
single arrowhead and the second line begins with a single arrowhead.

BB First Line OPERAND1 OPERAND2 OPERAND3 OPERAND4 OPERAND5 OPERAND6 B

© Copyright IBM Corp. 1994, 2001 197

B Second Line BC

Required operands: Required operands and values appear on the main path line.

BB REQUIRED_OPERAND BC

You must code required operands and values.

Choose one required item from a stack: If there is more than one mutually
exclusive required operand or value to choose from, they are stacked vertically in
alphanumeric order.

BB REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

BC

Optional values: Optional operands and values appear below the main path line.

BB
OPERAND

BC

You can choose not to code optional operands and values.

Choose one optional operand from a stack: If there is more than one mutually
exclusive optional operand or value to choose from, they are stacked vertically in
alphanumeric order below the main path line.

BB
OPERAND_OR_VALUE_1
OPERAND_OR_VALUE_2

BC

Repeating an operand: An arrow returning to the left above an operand or value
on the main path line means that the operand or value can be repeated. The
command means that each operand or value must be separated from the next by a
comma.

BB ^

,

REPEATABLE_OPERAND BC

Selecting more than one operand: An arrow returning to the left above a group of
operands or values means more than one can be selected, or a single one can be
repeated.

198 z/OS V1R2.0 CS: IP IMS Sockets Guide

BB

^

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPER_OR_VALUE_1
REPEATABLE_OPER_OR_VALUE_2

BC

If an operand or value can be abbreviated, the abbreviation is described in the text
associated with the syntax diagram.

Case Sensitivity: TCP/IP commands are not case sensitive. You can code them in
uppercase or lowercase.

Nonalphanumeric characters: If a diagram shows a character that is not
alphanumeric (such as parentheses, periods, commas, and equal signs), you must
code the character as part of the syntax. In this example, you must code
OPERAND=(001,0.001).

BB OPERAND=(001,0.001) BC

Blank spaces in syntax diagrams: If a diagram shows a blank space, you must
code the blank space as part of the syntax. In this example, you must code
OPERAND=(001 FIXED).

BB OPERAND=(001 FIXED) BC

Default operands: Default operands and values appear above the main path line.
TCP/IP uses the default if you omit the operand entirely.

BB
DEFAULT

OPERAND
BC

Variables: A word in all lowercase italics is a variable. Where you see a variable in
the syntax, you must replace it with one of its allowable names or values, as
defined in the text.

BB variable BC

Syntax fragments: Some diagrams contain syntax fragments, which serve to break
up diagrams that are too long, too complex, or too repetitious. Syntax fragment
names are in mixed case and are shown in the diagram and in the heading of the
fragment. The fragment is placed below the main diagram.

Appendix B. How to Read a Syntax Diagram 199

BB Reference to Syntax Fragment BC

Syntax Fragment:

1ST_OPERAND,2ND_OPERAND,3RD_OPERAND

References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number. An example of a syntax note
identifier and note is shown below.

BB
(1)

OPERAND BC

Notes:

1 An example of a syntax note.

200 z/OS V1R2.0 CS: IP IMS Sockets Guide

Appendix C. Information Apars

This appendix lists information apars for IP and SNA books.

Notes:

1. Information apars contain updates to previous editions of the manuals listed
below. Books updated for V1R2 are complete except for the updates contained
in the information apars that may be issued after V1R2 books went to press.

2. Information apars are predefined for z/OS V1R2 Communications Server and
may not contain updates.

IP Information Apars
Table 5 lists information apars for IP books.

Table 5. IP Information Apars

Title z/OS CS
V1R2

CS for
OS/390 2.10

and

z/OS CS
V1R1

CS for
OS/390 2.8

CS for
OS/990 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

IP API Guide ii12861 ii12371 ii11635 ii11558 ii11405 ii11144

IP CICS Sockets
Guide

ii12862 ii11626 ii11559 ii11406 ii11145

IP Configuration ii11620
ii12068
ii12353
ii12649

ii11555
ii11637
ii11995
ii12325

ii11402
ii11619
ii12066
ii12455

ii11159
ii11979
ii12315

IP Configuration Guide ii12498 ii12362
ii12493

IP Configuration
Reference

ii12499 ii12363
ii12494
ii12712

IP Diagnosis ii12503 ii12366
ii12495

ii11628 ii11565 ii11411 ii11160
ii11414

IP Messages Volume
1

ii12857 ii12367 ii11630 ii11562 ii11408 ii11636

IP Messages Volume
2

ii12858 ii12368 ii11631 ii11563 ii11409 ii11281

IP Messages Volume
3

ii12859 ii12369 ii11632
ii12883

ii11564
ii12884

ii11410
ii12885

ii11158

IP Messages Volume
4

ii12860

IP Migration ii12497 ii12361 ii11618 ii11554 ii11401 ii11204

IP Network Print
Facility

ii12864 ii11627 ii11561 ii11407 ii11150

IP Programmer’s
Reference

ii12505 ii11634 ii11557 ii11404 ii12496

© Copyright IBM Corp. 1994, 2001 201

|

|

|
|

|
|

Table 5. IP Information Apars (continued)

Title z/OS CS
V1R2

CS for
OS/390 2.10

and

z/OS CS
V1R1

CS for
OS/390 2.8

CS for
OS/990 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

IP and SNA Codes ii12504 ii12370 ii11917 Added
TCP/IP codes
to VTAM
codes V2R6
ii11611

ii11361 ii11146
ii11097

IP User’s Guide ii12365 ii11625 ii11556 ii11403 ii11143

IP User’s Guide and
Commands

ii12501

IP System Admin
Guide

ii12502

Quick Reference ii12500 ii12364

SNA Information Apars
Table 6 lists information apars for SNA books.

Table 6. SNA Information Apars

Title z/OS CS
V1R2

CS for
OS/390 2.10

and z/OS
CS V1R1

CS for
OS/390 2.8

CS for
OS/390 2.7

CS for
OS/390 2.6

CS for
OS/390 2.5

Anynet SNA over TCP/IP ii11922 ii11633 ii11624 ii11623

Anynet Sockets over SNA ii11921 ii11622 ii11519 ii11518

CSM Guide

IP and SNA Codes ii12370 ii11917 ii11611 ii11361 ii11097

SNA Customization ii12872 ii12388 ii11923 ii11925
ii12008

ii11924
ii12007

ii11092
ii11621
ii12006

SNA Diagnosis ii12490 ii12389 ii11915 ii11615 ii11357 ii11585

SNA Messages ii12491 ii12382 ii11916 ii11610 ii11358 ii11096

SNA Network
Implementation Guide

ii12487 ii12381 ii11911 ii11609
ii12683

ii11353
ii11493

ii11095

SNA Operation ii12489 ii12384 ii11914 ii11612 ii11355 ii11098

SNA Migration ii12486 ii12386 ii11910 ii11614 ii11359 ii11100

SNA Programming ii12385 ii11920 ii11613 ii11360 ii11099

Quick Reference ii12500 ii12364 ii11913 ii11616 ii11356

SNA Resource Definition
Reference

ii12488 ii12380
ii12567

ii11912
ii12568

ii11608
ii12569

ii11354
ii12259
ii12570

ii11094
ii11151
ii12260
ii12571

SNA Resource Definition
Samples

202 z/OS V1R2.0 CS: IP IMS Sockets Guide

Appendix D. Notices

IBM may not offer all of the products, services, or features discussed in this
document. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 1994, 2001 203

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O.Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly

204 z/OS V1R2.0 CS: IP IMS Sockets Guide

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

This product includes cryptographic software written by Eric Young.

If you are viewing this information softcopy, photographs and color illustrations may
not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats of unlicensed books and the z/OS Licensed
Product Library (LK3T-4307), which contains BookManager and PDF formats of
licensed books.

Appendix D. Notices 205

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM
Advanced Peer-to-Peer Networking
AFP
AD/Cycle
AIX
AIX/ESA
AnyNet
APL2
APPN
AS/400
AT
BookManager
BookMaster
CBPDO
C/370
CICS
CICS/ESA
C/MVS
Common User Access
C Set ++
CT
CUA
DATABASE 2
DatagLANce
DB2
DFSMS
DFSMSdfp
DFSMShsm
DFSMS/MVS
DPI
Domino
DRDA
eNetwork
Enterprise Systems Architecture/370
ESA/390
ESCON
^

ES/3090
ES/9000
ES/9370
EtherStreamer
Extended Services
FAA

Micro Channel
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
MQ
Natural
NetView
Network Station
Nways
Notes
NTune
NTuneNCP
OfficeVision/MVS
OfficeVision/VM
Open Class
OpenEdition
OS/2
OS/390
OS/400
Parallel Sysplex
Personal System/2
PR/SM
PROFS
PS/2
RACF
Resource Link
Resource Measurement Facility
RETAIN
RFM
RISC System/6000
RMF
RS/6000
S/370
S/390
SAA
SecureWay
Slate
SP
SP2
SQL/DS
System/360

206 z/OS V1R2.0 CS: IP IMS Sockets Guide

FFST
FFST/2
FFST/MVS
First Failure Support Technology
GDDM
Hardware Configuration Definition
IBM
IBMLink
IBMLINK
IMS
IMS/ESA
InfoPrint
Language Environment
LANStreamer
Library Reader
LPDA
MCS

System/370
System/390
SystemView
Tivoli
TURBOWAYS
UNIX System Services
Virtual Machine/Extended Architecture
VM/ESA
VM/XA
VSE/ESA
VTAM
WebSphere
XT
z/Architecture
z/OS
zSeries
400
3090
3890

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Tivoli and NetView are trademarks of Tivoli Systems Inc. in the United States, or
other countries, or both.

DB2 and NetView are registered trademarks of International Business Machines
Corporation or Tivoli Systems Inc. in the U.S., other countries, or both.

The following terms are trademarks of other companies:

ATM is a trademark of Adobe Systems, Incorporated.

BSC is a trademark of BusiSoft Corporation.

CSA is a trademark of Canadian Standards Association.

DCE is a trademark of The Open Software Foundation.

HYPERchannel is a trademark of Network Systems Corporation.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium, and ProShare are trademarks of Intel
Corporation in the United States, other countries, or both. For a complete list of
Intel trademarks, see http://www.intel.com/tradmarx.htm.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix D. Notices 207

http://www.intel.com/tradmarx.htm

208 z/OS V1R2.0 CS: IP IMS Sockets Guide

Index

A
accept 28
ACCEPT 64
ACCEPT (call) 64
active sockets 57
active sockets queue 35
ADDRSPC parameter 56
ADDRSPCPFX parameter 57
AF parameter on call interface, on SOCKET 131
alternate PCB 30
APPC 4
application data 30, 35
application data, explicit mode

data translation 40
end-of-message indicator 40
format 40
network byte order 40

application data, explicit-mode
format 47, 48
protocol 47, 48
translation 47, 48

application data, implicit-mode
data translation 42, 50
end-of-message 50
end-of-message indicator 42
format 42, 50

Application types
3270 3
client-server 3

ASCII to EBCDIC translation 40
ASMADLI 52
Assist module

role of 27
tradeoffs 27
use of IMS message queue 27

B
BACKLOG parameter 57
BACKLOG parameter on call interface, LISTEN

call 100
backlog queue 35
backlog queue, length 57
bb status code 50, 52
Berkley Sockets

BSD 4.3 5
big-endian 40
BIND 28
BIND (call) 66
bit-mask-length on call interface, on EZACIC06

call 141
bit-mask on call interface, on EZACIC06 call 140
BMP 56
BUF parameter on call socket interface

on RECV 106
on RECVFROM 108
on SEND 120

BUF parameter on call socket interface (continued)
on SENDTO 125
on WRITE 135

buffer full 44

C
C language 5

list of calls 23
CADLI 52
CALL Instruction Interface for Assembler, PL/1, and

COBOL 61
Call Instructions for Assembler, PL/1, and COBOL

Programs
BIND 66
CONNECT 70
EZACIC04 138
EZACIC05 139
EZACIC06 140
EZACIC08 142
FCNTL 72
GETCLIENTID 74
GETHOSTBYADDR 75
GETHOSTBYNAME 77
GETHOSTID 80
GETHOSTNAME 80
GETIBMOPT 82
GETPEERNAME 84
GETSOCKNAME 86
GETSOCKOPT 87
GIVESOCKET 91
INITAPI 93
IOCTL 95
LISTEN 99
READ 101
READV 102
RECV 104
RECVFROM 106
RECVMSG 108
SELECT 112
SELECTEX 116
SENDMSG 120
SENDTO 123
SETSOCKOPT 125
SHUTDOWN 129
SOCKET 130
TAKESOCKET 132
TERMAPI 134
WRITE 134
WRITEV 136

call interface sample PL/I programs 144
call sequence, explicit-mode client 40
CBLADLI 52
CH-MASK parameter on call interface, on

EZACIC06 140
child server 14
CHNG 30
client

defined 39

© Copyright IBM Corp. 1994, 2001 209

client (continued)
explicit-mode 39
logic flow 39

client call sequence, implicit-mode 41
CLIENT parameter on call socket interface

on GETCLIENTID 75
on GIVESOCKET 93
on TAKESOCKET 133

client-server 3
client/server processing 8
CLOSE 68
COBOL language

list of calls 23
codes, RSM reason 44
COMMAND parameter on call interface, IOCTL call 97
COMMAND parameter on call socket interface

on EZACIC06 141
on FCNTL 73
on GETIBMOPT 83

COMMIT 47, 48
commit, explicit-mode 39
commit database updates 30
complete-status message 45
concurrent server

defined 13
illustrated 13, 14

configuration file 56
configuring IMS TCP/IP 61
connection, how established 28
conversation, TCP/IP 28
CSMOKY 43, 45
CSMOKY message 41

D
data, application 30, 35
data translation

explicit-mode 40
data translation, socket interface 137

ASCII to EBCDIC 139
bit-mask to character 140
character to bit-mask 140
EBCDIC to ASCII 138

database calls 30
database updates, commit 30
DataLen 58
DataType 58

E
EBCDIC to ASCII translation 40
ERETMSK parameter on call interface, on

SELECT 116
ERRNO parameter on call socket interface

on ACCEPT 66
on BIND 68
on CLOSE 69
on CONNECT 72
on FCNTL 73
on GETCLIENTID 75
on GETHOSTNMAE 81
on GETIBMOPT 84

ERRNO parameter on call socket interface (continued)
on GETPEERNAME 86
on GETSOCKNAME 87
on GETSOCKOPT 91
on GIVESOCKET 93
on INITAPI 95
on IOCTL 99
on LISTEN 101
on READ 102
on READV 104
on RECV 106
on RECVFROM 108
on RECVMSG 112
on SELECT 116
on SELECTEX 118
on SEND 120
on SENDMSG 123
on SENDTO 125
on SETSOCKOPT 129
on SHUTDOWN 130
on SOCKET 132
on TAKESOCKET 133
on WRITE 135
on WRITEV 137

ESDNMASK parameter on call interface, on
SELECT 115

EWOULDBLOCK error return, call interface calls
RECV 104
RECVFROM 106

explicit-mode 5
explicit-mode client

application data format 40
call sequence 40
data format 40
data translation 40
network byte order 40

explicit-mode server
application data 47
call sequence 47
I/O PCB 47
PL/I programming 47
TIM 47
transaction-initiation message 47

EZACIC04, call interface, EBCDIC to ASCII
translation 138

EZACIC05, call interface, ASCII to EBCDIC
translation 139

EZACIC06 21
EZACIC06, call interface, bit-mask translation 140
EZACIC08, HOSTENT structure interpreter utility 142

F
FCNTL (call) 72
FLAGS parameter on call socket interface

on RECV 105
on RECVFROM 107
on RECVMSG 111
on SEND 120
on SENDMSG 122
on SENDTO 124

FNDELAY flag on call interface, on FCNTL 73

210 z/OS V1R2.0 CS: IP IMS Sockets Guide

G
GETCLIENTID (call) 74
GETHOSTBYADDR (call) 75
GETHOSTBYNAME (call) 77
GETHOSTID (call) 80
GETHOSTNAME (call) 80
GETIBMOPT (call) 82
GETPEERNAME (call) 84
GETSOCKNAME (call) 86
GETSOCKOPT (call) 87
GIVESOCKET 30
GIVESOCKET (call) 91

H
hlq.PROFILE.TCPIP data set 59
hlq.TCPIP.DATA data set 60
HOSTADDR parameter on call interface, on

GETHOSTBYADDR 76
HOSTENT parameter on call socket interface

on GETHOSTBYADDR 76
on GETHOSTBYNAME 79

HOSTENT structure interpreter parameters, on
EZACIC08 143

HOW parameter on call interface, on
SHUTDOWN 130

I
I/O Area size 52
I/O PCB in explicit-mode server 49
IDENT parameter on call interface, INITAPI call 95
implicit mode 5
implicit-mode

client 41
client call sequence 41
client logic flow 41
complete status message 41
CSM 41
data stream 41
transaction-request message 41
TRM 41

implicit-mode client
application data, format 43
application data stream 43
call sequence 43
data format 43
data translation 43
end-of-message indicator 43
logic flow 43

implicit-mode server
application data 50
Assist module 50
call sequence 50
I/O PCB 50
PL/I programming 50
programming 50

IMS Assist Module 4
IMS error 44
IMS Listener 4

role of 27

IMS Listener 4 (continued)
use of IMS message queue 27

IMSLSECX, Listener security exit name 58
IN-BUFFER parameter on call interface, EZACIC05

call 139
initapi 47, 49
INITAPI(call) 93
INQY 30
internets, TCP/IP 8
IOCTL (call) 95
IOV parameter on call socket interface

on READV 103
on WRITEV 137

IOVCNT parameter on call socket interface
on READV 103
on RECVMSG 111
on SENDMSG 122
on WRITEV 137

IP protocol 9
IpAddr 58
ISRT 50
iterative server

defined 13
illustrated 14

L
length of backlog queue 57
LENGTH parameter on call socket interface

on EZACIC04 138
on EZACIC05 139

LISTEN 28
LISTEN (call) 99
Listener call sequence 35
Listener configuration file

LISTENER statement 56
TCPIP statement 56
TRANSACTION statement 56

Listener ReasnCode 58
Listener RetnCode 58
Listener startup parameters 56
Listener statement 57
LISTNR 49
little-endian 40
LTERM name 53
LU 6.2 4

M
MAXACTSKT 35
MAXACTSKT parameter 57
MAXSNO parameter on call interface, INITAPI call 95
MAXSOC parameter on call socket interface

on INITAPI 94
on SELECT 114
on SELECTEX 117

MAXTRANS parameter 57
Message Format Services 3
Message format services (MFS) 35
message queue 27, 28, 30
message queue, use of 35

Index 211

messages
complete-status message 45

MFS 3
MODE=SNGL 47
MSG parameter on call socket interface

on RECVMSG 111
on SENDMSG 122

multiple connection requests 35

N
NAME parameter on call socket interface

on ACCEPT 66
on BIND 68
on CONNECT 71
on GETHOSTBYNAME 78
on GETHOSTNAME 81
on GETPEERNAME 85
on GETSOCKNAME 87
on RECVFROM 108
on SENDTO 125

NAMELEN parameter on call socket interface
on GETHOSTBYNAME 78
on GETHOSTNAME 81

NBYTE parameter on call socket interface
on READ 102
on RECV 105
on RECVFROM 108
on SEND 120
on SENDTO 125
on WRITE 135

network byte order 40

O
on GETIBMOPT 83
on READ 102
OPTLEN parameter on call socket interface

on GETSOCKOPT 91
on SETSOCKOPT 129

OPTNAME parameter on call socket interface
on GETSOCKOPT 89
on SETSOCKOPT 126

OPTVAL parameter on call socket interface
on GETSOCKOPT 90
on SETSOCKOPT 128

OSI 8
OUT-BUFFER parameter on call interface, on

EZACIC04 138
output area size 52
Overview 4

P
pending activity 20
pending exception 21
pending read 21
PL/1 programs, required statement 63
PL/I coding 45
PLIADLI 52
Port 58

port numbers
reserving port numbers 59

PORT parameter 57
ports

compared with sockets 11
reserving port numbers 59

program variable definitions, call interface
assembler definition 64
COBOL PIC 64
PL/1 declare 64
VS COBOL II PIC 64

PROTO parameter on call interface, on SOCKET 132
PURG call 52

Q
QC status code 50, 52
QD status code 50, 52

R
READ 30
READ (call) 101
READV (call) 102
ReasnCode, Listener 58
reason codes 44
RECV (call) 104
RECVFROM (call) 106
RECVMSG (call) 108
REQARG and RETARG parameter on call socket

interface
on FCNTL 73
on IOCTL 98

REQSTS 43
request-status message 43
Request-status message 39
requirements for IMS TCP/IP 23
RETARG parameter on call interface, on IOCTL 99
RETCODE parameter on call socket interface

on ACCEPT 66
on BIND 68
on CLOSE 69
on CONNECT 72
on EZACIC06 141
on FCNTL 73
on GETCLIENTID 75
on GETHOSTBYADDR 76
on GETHOSTBYNAME 79
on GETHOSTID 80
on GETHOSTNAME 82
on GETIBMOPT 84
on GETPEERNAME 86
on GETSOCKNAME 87
on GETSOCKOPT 91
on GIVESOCKET 93
on INITAPI 95
on IOCTL 99
on LISTEN 101
on READ 102
on READV 104
on RECV 106
on RECVFROM 108

212 z/OS V1R2.0 CS: IP IMS Sockets Guide

RETCODE parameter on call socket interface
(continued)

on RECVMSG 112
on SELECT 116
on SELECTEX 118
on SEND 120
on SENDMSG 123
on SENDTO 125
on SETSOCKOPT 129
on SHUTDOWN 130
on SOCKET 132
on TAKESOCKET 133
on WRITE 135
on WRITEV 137

RetnCode, Listener 58
return codes

call interface 64
return codes, I/O PCB

bb 53
EA 53
EB 53
EC 53
QC 53
QD 53
ZZ 53

ROLB call 53
RRETMSK parameter on call interface, on

SELECT 115
RSM 39
RSM reason codes 44
RSMId 43
RSMLen 43
RSMRetCod 43
RSMRsnCod 43
RSMRsv 43
RSNDMSK parameter on call interface, on

SELECT 115

S
S, defines socket descriptor on socket interface

on ACCEPT 66
on BIND 67
on CLOSE 69
on CONNECT 71
on FCNTL 73
on GETPEERNAME 85
on GETSOCKNAME 87
on GETSOCKOPT 89
on GIVESOCKET 93
on IOCTL 97
on LISTEN 100
on READ 102
on READV 103
on RECV 105
on RECVFROM 107
on RECVMSG 111
on SEND 119
on SENDMSG 122
on SENDTO 124
on SETSOCKOPT 126
on SHUTDOWN 130

S, defines socket descriptor on socket interface
(continued)

on WRITE 135
on WRITEV 137

sample programs
call interface

CBLOCK, PL/I 149
client, PL/I 147
server, PL/I 145

security exit 28
security exit, data passed by Listener 58
security exit, Listener 58
security exit, return codes 58
security exit reason codes 44
SELECT (call) 112
select mask 20
SELECTEX (call) 116
SEND (call) 118
SENDMSG (call) 120
SENDTO (call) 123
server, defined 39
server, explicit mode

see explicit mode server 47
server call sequence, explicit-mode 47
server programming, logic flow 47
SETSOCKOPT (call) 125
SHUTDOWN (call) 129
SNA 4
SNA protocols

compared with SNA 7
compared with TCP/IP 7

SOCKET (call) 130
Socket interface 5
sockets

compared with ports 11
introduction 9

Sockets 4
Sockets Extended API 10
SOCRECV parameter on call interface, TAKESOCKET

call 133
SOCTYPE parameter on call interface, on

SOCKET 131
SUBTASK parameter on call interface, INITAPI call 95
SYNC 30
syntax diagram, reading 197
System Return codes 193

T
takesocket 47, 49
takeSOCKET 30
TAKESOCKET (call) 132
TCP/IP for MVS, modifying data sets

modifying data sets 59
TCP/IP protocols 8
TCP/IP Services 23
TCP protocol 9
TCPIP statement 56
TCPIPJOBNAME user id 60
TELNET 3
TERMAPI (call) 134
TIM 30, 49

Index 213

TIMDataType 49
TIMEOUT parameter on call interface, on

SELECT 115
TIMEOUT parameter on call socket interface

on SELECTEX 117
TIMId 49
TIMLen 49
TIMListTaskID 47
TIMLstAddrSpc 47, 49
TIMLstTaskID 49
TIMRsv 49
TIMSktDesc 47, 49
TIMSrvAddrSpc 47, 49
TIMSrvTaskID 47, 49
TIMTCPAddrSpc 47, 49
TN3270 3
TOKEN parameter on call interface, on EZACIC06 140
TRANCODE 27, 28
Transaction code 27
Transaction-initiation message 49
transaction name, IMS 57
transaction not defined 44
transaction request message 28
transaction-request message 43
Transaction-request message 39
TRANSACTION statement 57
transaction unavailable 44
transaction verification 58
TransNam 58
TRM 28, 39, 43
TRM bad format 44
TRMId 43
TRMlen 43
TRMRsv 43
TRMTrnCod 43
TRMUsrDat 43

U
UDP protocol 9
updates, database commit 30
use of HOSTENT structure interpreter, EZACIC08 142
Userdata 58
utility programs 137

EZACIC04 138
EZACIC05 139
EZACIC06 140
EZACIC08 142

V
verification, transaction 58
VTAM 4

W
WRETMSK parameter on call interface, on

SELECT 115
write() 30, 35
WRITE (call) 134
WRITEV (call) 136

WSNDMSK parameter on call interface, on
SELECT 115

Z
ZZ status code 52

214 z/OS V1R2.0 CS: IP IMS Sockets Guide

Readers’ Comments — We’d Like to Hear from You

z/OS Communications Server
IP IMS Sockets Guide
Version 1 Release 2

Publication No. SC31-8830-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC31-8830-00

SC31-8830-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC31-8830-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

Co
m

m
un

ic
at

io
ns

Se
rv

er
z/

O
S

V
1R

2.
0

C
S:

IP
IM

S
So

ck
et

s
G

ui
de

Ve
rs

io
n

1
R

el
ea

se
2

	Contents
	Figures
	Tables
	About This Book
	Typographic Conventions Used in This Book
	Where to Find More Information
	Where to Find Related Information on the Internet
	DNS Web Sites

	Licensed Documents
	LookAt, an Online Message Help Facility
	How to Contact IBM® Service
	z/OS Communications Server Information
	Softcopy Information
	z/OS Communications Server Library
	Redbooks
	Related Information
	Determining If a Publication Is Current

	Summary of Changes
	Part 1. IMS Overview
	Chapter 1. Using TCP/IP with IMS
	The Role of IMS TCP/IP
	Introduction to IMS TCP/IP
	IMS TCP/IP Feature Components
	The IMS Listener
	The IMS Assist Module
	The MVS TCP/IP Socket Application Programming Interface (SocketsExtended)

	Chapter 2. Introduction to TCP/IP for IMS
	What IMS TCP/IP Does
	Using IMS with SNA or TCP/IP

	TCP/IP Internets
	Mainframe Interactive Processing
	Client/Server Processing
	TCP, UDP, and IP
	The Socket API
	What the Socket API Provides

	Programming with Sockets
	Socket types
	Addressing TCP/IP hosts
	Address Families
	Socket Addresses
	Internet (IP) Addresses
	Ports
	Domain Names
	Network Byte Order

	A Typical Client Server Program Flow Chart
	Concurrent and Iterative Servers

	The Basic Socket Calls
	Server TCP/IP calls
	Socket
	Bind
	Listen
	Accept
	GIVESOCKET and TAKESOCKET
	Read and Write

	Client TCP/IP Calls
	The Socket Call
	The Connect Call
	Read/Write Calls — the Conversation
	The Close Call

	Other Socket Calls
	The SELECT Call
	IOCTL and FCNTL Calls
	GIVESOCKET and TAKESOCKET Calls
	Summary

	What You Need to Run IMS TCP/IP
	TCP/IP Services

	A Summary of What IMS TCP/IP Provides

	Part 2. Using The IMS Listener
	Chapter 3. Principles of Operation
	Overview
	The Role of the IMS Listener
	The Role of the IMS Assist Module
	Use of the IMS Assist Module — Pros and Cons

	Client/Server Logic Flow
	How the Connection is Established
	How the Server Exchanges Data with the Client
	Explicit-Mode Transactions
	Implicit-Mode Transactions

	How the IMS Listener Manages Multiple Connection Requests
	Use of the IMS Message Queue
	Input Messages
	Output Messages

	Call Sequence for the IMS Listener
	Application Design Considerations
	Programs That Are Not Started by the IMS Listener
	When the Client is an IMS MPP
	Abend Processing
	True Abends
	Pseudo Abends

	Implicit-Mode Support for ROLB Processing
	Restrictions

	Chapter 4. How to Write an IMS TCP/IP Client Program
	Client Program Logic Flow — General
	Explicit-Mode Client Program Logic Flow
	Explicit-Mode Client Call Sequence
	Explicit-Mode Application Data
	Format
	Data Translation.
	Network Byte Order
	End-of-Message Indicator

	Implicit-Mode Client Logic Flow
	Implicit-Mode Client Call Sequence
	Implicit Mode Application Data Stream
	Client-to-Server Data Stream
	Server-to-Client Data Stream

	Implicit-Mode Application Data
	Format.
	Data Translation.
	End-of-Message Segment.

	IMS TCP/IP Message Segment Formats
	Transaction-Request Message Segment (Client to Listener)
	Request-Status Message Segment
	Request-Status Message Reason Codes

	Complete-Status Message Segment
	End-of-Message Segment (EOM)

	PL/I Coding

	Chapter 5. How to Write an IMS TCP/IP Server Program
	Server Program Logic Flow —General
	Explicit-Mode Server Program Logic Flow
	Explicit-Mode Call Sequence
	Explicit-Mode Application Data
	Format
	EBCDIC/ASCII Data Translation

	Transaction-Initiation Message Segment
	Program Design Considerations
	I/O PCB — Explicit-Mode Server
	Status Codes

	Explicit-Mode Server — PL/I Programming Considerations

	Implicit-Mode Server Program Logic Flow
	Implicit-Mode Server Call Sequence
	Implicit-Mode Application Data
	Format.
	Data Translation.
	End-of-Message Segment.

	Programming to the Assist Module Interface
	Implicit-Mode Server PL/I Programming Considerations
	Implicit-Mode Server C Language Programming Considerations
	I/O PCB Implicit-Mode Server
	Status Codes

	Chapter 6. How to Customize and Operate the IMS Listener
	How to Start the IMS Listener
	How to Stop the IMS Listener
	The IMS Listener Configuration File
	TCPIP Statement
	LISTENER Statement
	TRANSACTION Statement

	The IMS Listener Security Exit
	TCP/IP Services Definitions
	The hlq.PROFILE.TCPIP Data Set
	The hlq.TCPIP.DATA Data Set

	Chapter 7. Using the CALL Instruction ApplicationProgramming Interface (API)
	Environmental Restrictions and Programming Requirements
	CALL Instruction Application Programming Interface (API)
	Understanding COBOL, Assembler, and PL/1 Call Formats
	COBOL Language Call Format
	Assembler Language Call Format
	PL/1 Language Call Format

	Converting Parameter Descriptions
	Diagnosing Problems in Applications Using the CALL Instruction API
	Error Messages and Return Codes
	Code CALL Instructions
	ACCEPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	BIND
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	CLOSE
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	CONNECT
	Stream Sockets
	UDP Sockets
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	FCNTL
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETCLIENTID
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETHOSTBYADDR
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETHOSTBYNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETHOSTID
	Parameter Values Set by the Application

	GETHOSTNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETIBMOPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETPEERNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETSOCKNAME
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GETSOCKOPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	GIVESOCKET
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	INITAPI
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	IOCTL
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	LISTEN
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	READ
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	READV
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	RECV
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	RECVFROM
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	RECVMSG
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SELECT
	Defining Which Sockets to Test
	Read Operations
	Write Operations
	Exception Operations
	MAXSOC Parameter
	TIMEOUT Parameter
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SELECTEX
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SEND
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SENDMSG
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SENDTO
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SETSOCKOPT
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SHUTDOWN
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	SOCKET
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	TAKESOCKET
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	TERMAPI
	Parameter Values Set by the Application

	WRITE
	Parameter Values Set by the Application
	Parameter Values Returned to the Application

	WRITEV
	Parameter Values Set by the Application
	Parameters Returned by the Application

	Using Data Translation Programs for Socket Call Interface
	Data Translation
	Bit String Processing
	EZACIC04
	EZACIC05
	EZACIC06
	EZACIC08

	Call Interface PL/1 Sample Programs
	Sample Code for Server Program
	Sample Program for Client Program
	Common Variables Used in PL/1 Sample Programs

	Chapter 8. IMS Listener Samples
	IMS TCP/IP Control Statements
	JCL for Starting a Message Processing Region
	JCL for Linking the IMS Listener
	EZAIMSCZ JCLIN
	EZAIMSPL JCLIN

	Listener IMS Definitions
	PSB Definition
	Application Definition

	Sample Program Explicit-Mode
	Program Flow
	Sample Explicit-Mode Client Program (C Language)
	Sample Explicit-Mode Server Program (Assembler Language)

	Sample Program Implicit-Mode
	Program flow
	Sample Implicit-Mode Client Program (C Language)
	Sample Implicit-Mode Server Program (Assembler Language)

	Sample Program - IMS MPP Client
	Program Flow
	Sample Client Program for non-IMS server
	Sample Server Program for IMS MPP Client
	WTO output from sample program

	Part 3. Appendixes
	Appendix A. Return Codes
	Sockets Extended ERRNOs

	Appendix B. How to Read a Syntax Diagram
	Symbols and Punctuation
	Parameters
	Syntax Examples

	Appendix C. Information Apars
	IP Information Apars
	SNA Information Apars

	Appendix D. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

